Câu hỏi:

03/04/2024 36

Gọi S là tập hợp tất cả các số thực m để phương trình \[4{\cos ^3}x + 2\cos 2x + 2 = \left( {m + 3} \right)\cos x\] có đúng 5 nghiệm thuộc \[\left( { - \frac{\pi }{2};2\pi } \right]\]. Kết luận nào sau đây đúng?

A. \[S \subset \left( {0;7} \right)\]

B. \[\left( { - 2;8} \right) \subset S\]

C. \[S \cap \left( {0; + \infty } \right) = \emptyset \]

D. \[S \subset \left( { - 3;5} \right)\]

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp giải:

Giải chi tiết:

Media VietJack

Ta có:

\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} 4{\cos ^3}x + 2\cos 2x + 2 = \left( {m + 3} \right)\cos x{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} (*){\mkern 1mu} \]

\[ \Leftrightarrow 4{\cos ^3}x + 4{\cos ^2}x - \left( {m + 3} \right)\cos x = 0\]

\[ \Leftrightarrow \left( {4{{\cos }^2}x + 2\cos x - \left( {m + 3} \right)} \right).\cos x = 0\]

\[ \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{4{{\cos }^2}x + 4\cos x - \left( {m + 3} \right) = 0{\mkern 1mu} {\mkern 1mu} (1)}\\{\cos x = 0{\mkern 1mu} {\mkern 1mu} (2)}\end{array}} \right.\]

Phương trình \[(2) \Leftrightarrow x = \frac{\pi }{2} + k\pi {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {k \in Z} \right)\]. Mà \[x \in \left( { - \frac{\pi }{2};2\pi } \right] \Rightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{2}}\\{x = \frac{{3\pi }}{2}}\end{array}} \right.\]

Thay \[\cos x = 0\] vào (1): \[{4.0^2} + 4.0 - \left( {m + 3} \right) = 0 \Leftrightarrow m = - 3\]

+) Với \[m = - 3\]:

Phương trình \[(1) \Leftrightarrow 4{\cos ^2}x + 4\cos x = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{\cos x = 0}\\{\cos x = - 1}\end{array}} \right. \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{x = \frac{\pi }{2} + k\pi }\\{x = \pi + k2\pi }\end{array}} \right.{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} ,k \in \mathbb{Z}\]

\[x \in \left( { - \frac{\pi }{2};2\pi } \right] \Rightarrow x \in \left\{ {\frac{\pi }{2};\frac{{3\pi }}{2};\pi } \right\}\]

Phương trình \[(*)\] có đúng 3 nghiệm thuộc \[\left( { - \frac{\pi }{2};2\pi } \right]\]\[\left\{ {\frac{\pi }{2};\frac{{3\pi }}{2};\pi } \right\} \Rightarrow m = - 3\] không thỏa mãn

+) Với \[m \ne - 3\]: Phương trình (1) không có nghiệm \[x = \frac{\pi }{2},{\mkern 1mu} {\mkern 1mu} x = \frac{{3\pi }}{2}\]. Khi đó, để (*) có đúng 5 nghiệm thuộc \[\left( { - \frac{\pi }{2};2\pi } \right]\] thì phương trình (1) có đúng 3 nghiệm thuộc \[\left( { - \frac{\pi }{2};2\pi } \right]\]

Đặt \[\cos x = t\], (1) trở thành: \[4{t^2} + 4t - \left( {m + 3} \right) = 0\] (3)

Phương trình (1) có đúng 3 nghiệm thuộc \[\left( { - \frac{\pi }{2};2\pi } \right]\] Phương trình (3) có 2 nghiệm \[{t_1},{\mkern 1mu} {\mkern 1mu} {t_2}{\mkern 1mu} {\mkern 1mu} \left( {{t_1} \le {t_2}} \right)\] thỏa mãn:

 Media VietJack

hoặc \[\left\{ {\begin{array}{*{20}{l}}{{t_1} = - 1}\\{{t_2} \in \left( { - 1;0} \right] \cup \left\{ 1 \right\}}\end{array}} \right.\], hoặc \[{t_1} = {t_2} \in \left( {0;1} \right)\], hoặc \[\left\{ {\begin{array}{*{20}{l}}{{t_1} \in \left( {0;1} \right)}\\{{t_2} > 1}\end{array}} \right.\], hoặc \[\left\{ {\begin{array}{*{20}{l}}{{t_1} < - 1}\\{{t_2} \in \left( {0;1} \right)}\end{array}} \right.\]

TH1: \[\left\{ {\begin{array}{*{20}{l}}{{t_1} = - 1}\\{{t_2} \in \left( { - 1;0} \right] \cup \left\{ 1 \right\}}\end{array}} \right.\]

\[ \Rightarrow 4.{\left( { - 1} \right)^2} + 4.\left( { - 1} \right) - \left( {m + 3} \right) = 0 \Leftrightarrow m = - 3\] (loại)

TH2: \[{t_1} = {t_2} \in \left( {0;1} \right)\]

\[ \Rightarrow \Delta ' = 0 \Leftrightarrow 4 + 4\left( {m + 3} \right) \Leftrightarrow 4m + 16 = 0 \Leftrightarrow m = - 4\]

Khi đó, (3) có 2 nghiệm \[{t_1} = {t_2} = - \frac{1}{2} \notin \left( {0;1} \right){\mkern 1mu} {\mkern 1mu} \Rightarrow m = - 4\]: không thỏa mãn

TH3:

\[\left\{ {\begin{array}{*{20}{l}}{{t_1} \in \left( {0;1} \right)}\\{{t_2} > 1}\end{array}} \right. \Leftrightarrow 0 < {t_1} < 1 < {t_2} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{{t_1}{t_2} > 0}\\{{t_1} + {t_2} > 0}\\{\left( {{t_1} - 1} \right)\left( {{t_2} - 1} \right) < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{{t_1}{t_2} > 0}\\{{t_1} + {t_2} > 0}\\{{t_1}{t_2} - \left( {{t_1} + {t_2}} \right) + 1 < 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{4m + 16 > 0}\\{ - \frac{{m + 3}}{4} > 0}\\{ - \frac{4}{4} > 0}\\{1 - \left( { - \frac{4}{4}} \right) - \frac{{m + 3}}{4} < 0}\end{array}} \right. \Leftrightarrow m \in \emptyset \]

TH4:

\[\left\{ {\begin{array}{*{20}{l}}{{t_1} < - 1}\\{{t_2} \in \left( {0;1} \right)}\end{array}} \right. \Leftrightarrow {t_1} < - 1 < 0 < {t_2} < 1 \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{\Delta ' > 0}\\{{t_1}{t_2} < 0}\\{\left( {{t_1} + 1} \right)\left( {{t_2} + 1} \right) < 0}\\{\left( {{t_1} - 1} \right) + \left( {{t_2} - 1} \right) < 0}\\{\left( {{t_1} - 1} \right)\left( {{t_2} - 1} \right) > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{4m + 16 > 0}\\{ - \frac{{m + 3}}{4} < 0}\\{ - \frac{{m + 3}}{4} + \left( { - \frac{4}{4}} \right) + 1 < 0}\\{ - \frac{4}{4} - 2 < 0}\\{ - \frac{{m + 3}}{4} - \left( { - \frac{4}{4}} \right) + 1 > 0}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{m > - 4}\\{m > - 3}\\{m < 5}\end{array}} \right. \Leftrightarrow m \in \left( { - 3;5} \right)\]

Vậy, tập các giá trị thực của m thỏa mãn yêu cầu đề bài là: \[S = \left( { - 3;5} \right)\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Từ các chữ số 4, 5, 6, 7 có thể lập được bao nhiêu số tự nhiên có các chữ số đôi một khác nhau?

Xem đáp án » 03/04/2024 49

Câu 2:

Rút ngẫu nhiên 8 quân bài từ 1 bộ tú lơ khơ 52 quân. Xác suất lấy được 5 quân màu đỏ là:

Xem đáp án » 03/04/2024 49

Câu 3:

Cho mặt phẳng \[\left( \alpha \right)\] và đường thẳng \[d\not \subset \left( \alpha \right)\]. Khẳng định nào sau đây SAI?

Xem đáp án » 03/04/2024 47

Câu 4:

Trong mặt phẳng tọa độ Oxy cho đường thẳng d có phương trình là \[2x - y + 1 = 0\] và đường thẳng d’ có phương trình là \[2x - y + 5 = 0\]. Phép tịnh tiến theo vectơ \[\vec v\] nào sau đây biến d thành d’?

Xem đáp án » 03/04/2024 45

Câu 5:

Trong mặt phẳng tọa độ Oxy, cho tam giác ABC. Gọi M, N, P lần lượt là trung điểm của các cạnh BC, CA, AB. Phát biểu nào sau đây SAI?

Xem đáp án » 03/04/2024 44

Câu 6:

c. Biết tổng của các hệ số trong khai triển \[{\left( {1 + {x^2}} \right)^n}\] bằng 512. Hãy tìm hệ số của số hạng chứa \[{x^{12}}\] trong khai triển đó.

Xem đáp án » 03/04/2024 42

Câu 7:

Có bao nhiêu cách sắp xếp 6 học sinh lớp 11 và 3 học sinh lớp 12 vào một hàng ghế dài gồm 9 ghế sao cho mỗi học sinh lớp 12 ngồi giữa 2 học sinh lớp 11?

Xem đáp án » 03/04/2024 41

Câu 8:

a. Giải phương trình \[\sqrt 3 \sin 2x + \cos 2x = 2\cos x\].

Xem đáp án » 03/04/2024 41

Câu 9:

d. Cho 15 viên bi, trong đó có 4 viên bi màu đỏ, 5 viên bi màu vàng, 6 viên bi màu xanh. Chọn ngẫu nhiên 3 viên vi trong 15 viên bi nói trên. Tính xác suất để chọn được đúng 2 viên bi màu xanh.

Xem đáp án » 03/04/2024 39

Câu 10:

Tập xác định của hàm số \[y = \frac{{\sin {\mkern 1mu} x + \cos x}}{{\tan {\mkern 1mu} x}}\] là:

Xem đáp án » 03/04/2024 37

Câu 11:

Hệ số của số hạng chứa \[{x^{17}}\] trong khai triển \[{\left( {{x^2} - 2x} \right)^{10}}\]

Xem đáp án » 03/04/2024 37

Câu 12:

Trên khoảng \[\left( { - \frac{{3\pi }}{4};\frac{\pi }{4}} \right)\] tập giá trị của hàm số \[y = \cos x\] là:

Xem đáp án » 03/04/2024 34

Câu 13:

Cho phương trình \[\sin 2x + \sqrt 2 \sin \left( {x - \frac{\pi }{4}} \right) = 1\]. Đặt \[t = \sin {\mkern 1mu} x - \cos x\] ta được phương trình nào sau đây?

Xem đáp án » 03/04/2024 34

Câu 14:

Tính tổng \[S = {\left( {C_{2017}^0} \right)^2} + {\left( {C_{2017}^1} \right)^2} + {\left( {C_{2017}^2} \right)^2} + ... + {\left( {C_{2017}^{2017}} \right)^2}\].

Xem đáp án » 03/04/2024 34

Câu 15:

Tính giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên khoảng \[\left[ { - \frac{\pi }{3};\frac{\pi }{2}} \right]\]

\[y = \cos 2x + \sin {\mkern 1mu} x - \sqrt 3 \left( {\sin 2x + \cos x} \right) + 3\]

Xem đáp án » 03/04/2024 34