Câu hỏi:
20/12/2023 166
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1; 2), B(0; 3) và C(4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng
Trong mặt phẳng với hệ tọa độ Oxy, cho tam giác ABC có A(1; 2), B(0; 3) và C(4; 0). Chiều cao của tam giác kẻ từ đỉnh A bằng
A.
A.
B.
B.
C.
D. 3.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Với B(0; 3) và C(4; 0) ta có
Khi đó đường thẳng BC đi qua B(0; 3) và nhận làm một vectơ pháp tuyến nên có phương trình là: 3(x – 0) + 4(y – 3) = 0 hay 3x + 4y – 12 = 0.
Khi đó khoảng cách từ A(1; 2) đến đường thẳng BC chính là chiều cao kẻ từ A của tam giác ABC, và bằng
Hướng dẫn giải
Đáp án đúng là: A
Với B(0; 3) và C(4; 0) ta có
Khi đó đường thẳng BC đi qua B(0; 3) và nhận làm một vectơ pháp tuyến nên có phương trình là: 3(x – 0) + 4(y – 3) = 0 hay 3x + 4y – 12 = 0.
Khi đó khoảng cách từ A(1; 2) đến đường thẳng BC chính là chiều cao kẻ từ A của tam giác ABC, và bằng
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Khoảng cách giữa hai đường thẳng song song d1: 6x – 8y – 101 = 0 và d2: 3x – 4y = 0 bằng:
Khoảng cách giữa hai đường thẳng song song d1: 6x – 8y – 101 = 0 và d2: 3x – 4y = 0 bằng:
Câu 2:
Đường tròn (C) có tâm là gốc tọa độ O(0; 0) và tiếp xúc với đường thẳng ∆: 8x + 6y + 100 = 0. Bán kính R của đường tròn (C) bằng
Đường tròn (C) có tâm là gốc tọa độ O(0; 0) và tiếp xúc với đường thẳng ∆: 8x + 6y + 100 = 0. Bán kính R của đường tròn (C) bằng
Câu 3:
Trong mặt phẳng tọa độ Oxy, khoảng cách từ điểm A(1; 1) đến đường thẳng Δ: 5x – 12y – 6 = 0 là
Trong mặt phẳng tọa độ Oxy, khoảng cách từ điểm A(1; 1) đến đường thẳng Δ: 5x – 12y – 6 = 0 là
Câu 4:
Câu 5:
Trong mặt phẳng tọa độ Oxy, khoảng cách từ giao điểm của hai đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng d: 3x + y + 4 = 0 bằng
Trong mặt phẳng tọa độ Oxy, khoảng cách từ giao điểm của hai đường thẳng x – 3y + 4 = 0 và 2x + 3y – 1 = 0 đến đường thẳng d: 3x + y + 4 = 0 bằng
Câu 6:
Trong mặt phẳng tọa độ Oxy, khoảng cách từ điểm M(2; 0) đến đường thẳng Δ: bằng
Trong mặt phẳng tọa độ Oxy, khoảng cách từ điểm M(2; 0) đến đường thẳng Δ: bằng
Câu 8:
Giá trị của tham số m để khoảng cách từ điểm A(−1; 2) đến đường thẳng Δ: mx + y – m + 4 = 0 bằng là
Giá trị của tham số m để khoảng cách từ điểm A(−1; 2) đến đường thẳng Δ: mx + y – m + 4 = 0 bằng là
Câu 9:
Khoảng cách từ điểm M(0; 3) đến đường thẳng ∆: xcosα + ysinα + 3(2 – sinα) = 0 bằn
Khoảng cách từ điểm M(0; 3) đến đường thẳng ∆: xcosα + ysinα + 3(2 – sinα) = 0 bằn