Trong không gian tọa độ Oxyz, cho điểm A(-3,3,-3) thuộc mặt phẳng (anpha)

Trong không gian tọa độ Oxyz, cho điểm A(-3,3,-3) thuộc mặt phẳng α:2x2y+z+15=0 và mặt cầu S:x22+y32+z52=100 .

Đường thẳng qua A, nằm trên mặt phẳng α  cắt S  tại M,N . Để độ dài MN lớn nhất thì phương trình đường thẳng

A. x+31=y34=z+36 .

B. x+316=y311=z+310 .
C. x=3+5ty=3z=3+8t .
D. x+31=y31=z+33 .

Trả lời

Mặt cầu S  có tâm I2;3;5  và bán kính R=10 .

Mặt phẳng α  có vectơ pháp tuyến n=2;2;1 .

Gọi H,K  lần lượt là hình chiếu vuông góc của I lên  và mặt phẳng α .

IKα nên phương trình đường thẳng IK đi qua I và vuông góc với mặt phẳng α  x=2+2ty=32tz=5+t .

Tọa độ điểm K là nghiệm hệ phương trình x=2+2ty=32tz=5+t2x2y+z+15=0K2;7;3 .

Δα  nên IHIK . Do đó IH nhỏ nhất khi H trùng với K.

Để MN lớn nhất thì IH   phải nhỏ nhất.

Khi đó đường thẳng cần tìm đi qua A và K. Ta có AK=1;4;6 .

Đường thẳng có phương trình là: x+31=y34=z+36 .

Chọn A.

Câu hỏi cùng chủ đề

Xem tất cả