Câu hỏi:
29/12/2023 101Trong hệ tọa độ Oxy cho tam giác ABC có A (– 2 + x ; 2), B (3 ; 5 + 2y), C(x ; 3 – y). Tìm tổng 2x + y với x, y để O (0 ; 0) là trọng tâm tam giác ABC?
A. – 7;
B. – 2 ;
C. – 11;
D. \( - \frac{{21}}{{10}}\).
Trả lời:
Hướng dẫn giải
Đáp án đúng là : C
Vì O là trọng tâm tam giác ABC nên, ta có : \[\left\{ \begin{array}{l}{x_G} = \frac{{ - 2 + x + 3 + x}}{3} = 0\\{y_G} = \frac{{2 + 5 + 2y + 3 - y}}{3} = 0\end{array} \right.\]
\[ \Rightarrow \]\[\left\{ \begin{array}{l}x = - \frac{1}{2}\\y = - 10\end{array} \right. \Rightarrow 2.x + y = 2.\left( { - \frac{1}{2}} \right) + \left( { - 10} \right) = - 11\].
Hướng dẫn giải
Đáp án đúng là : C
Vì O là trọng tâm tam giác ABC nên, ta có : \[\left\{ \begin{array}{l}{x_G} = \frac{{ - 2 + x + 3 + x}}{3} = 0\\{y_G} = \frac{{2 + 5 + 2y + 3 - y}}{3} = 0\end{array} \right.\]
\[ \Rightarrow \]\[\left\{ \begin{array}{l}x = - \frac{1}{2}\\y = - 10\end{array} \right. \Rightarrow 2.x + y = 2.\left( { - \frac{1}{2}} \right) + \left( { - 10} \right) = - 11\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong hệ tọa độ Oxy cho tam giác ABC có A (3; 5), B (1; 2), C (5; 2). Tìm tọa độ trọng tâm G của tam giác ABC.
Câu 2:
Trong hệ tọa độ Oxy cho tam giác ABC có C (–2 ; –4), trọng tâm G (0 ; 4) và trung điểm cạnh BC là M (2 ; 0). Tổng hoành độ của điểm A và B là.
Câu 3:
Trong hệ tọa độ Oxy cho tam giác ABC có M (2; 3), N (0; –4), P (–1; 6) lần lượt là trung điểm của các cạnh BC, AC, AB. Tìm tọa độ đỉnh A?
Câu 4:
Trong hệ tọa độ Oxy cho ba điểm A (1; 3) ; B (– 1; 2) ; C (– 2 ; 1) . Tìm tọa độ của vectơ \[\overrightarrow {AB} - \overrightarrow {AC} \].
Câu 5:
Trong hệ tọa độ Oxy cho tam giác ABC có B (9 ; 7), C (11 ; –1). Gọi M, N lần lượt là trung điểm của AB, AC. Tìm tọa độ vectơ \[\overrightarrow {MN} \]?
Câu 6:
Trong hệ tọa độ Oxy cho tam giác ABC có A (6 ; 1), B ( –3 ; 5) và trọng tâm G (–1 ; 1). Tìm tọa độ đỉnh C?
Câu 7:
Cho \[\overrightarrow a \] = (2; – 4), \[\overrightarrow b \]= (– 5; 3). Tìm tọa độ của \[\overrightarrow a \] + \[\overrightarrow b \].