Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn? a) un = n – 1; b) un = n + 1/n + 2; c) un = sin n; d) un = (– 1)n – 1 n^2.

Trong các dãy số (un) sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?

a) un = n – 1;

b) \({u_n} = \frac{{n + 1}}{{n + 2}}\);

c) un = sin n;

d) un = (– 1)n – 1 n2.

Trả lời

Lời giải:

a) Ta có: un = n – 1 ≥ 0 với mọi n *.

Do đó, dãy số (un) bị chặn dưới với mọi n *.

Dãy số (un) không bị chặn trên vì không có số M nào thỏa mãn:

un = n – 1 ≤ M với mọi n *.

Vậy dãy số (un) bị chặn dưới và không bị chặn trên nên không bị chặn.

b) Ta có: \({u_n} = \frac{{n + 1}}{{n + 2}} = \frac{{n + 2 - 1}}{{n + 2}} = 1 - \frac{1}{{n + 2}}\), với mọi n *.

Vì \(0 < \frac{1}{{n + 2}} \le \frac{1}{3}\), n * nên \( - \frac{1}{3} \le - \frac{1}{{n + 2}} < 0\) n *.

Suy ra \(1 - \frac{1}{3} \le 1 - \frac{1}{{n + 2}} < 1\) hay \(\frac{2}{3} \le {u_n} < 1\) n *.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

c) Ta có: – 1 ≤ sin n ≤ 1 với mọi n *.

Do đó, – 1 ≤ un ≤ 1 với mọi n *.

Vậy dãy số (un) bị chặn trên, bị chặn dưới nên dãy số (un) là dãy số bị chặn.

d) un = (– 1)n – 1 n2

Ta có: (– 1)n – 1 = 1 với mọi n * và n lẻ.

(– 1)n – 1 = – 1 với mọi n * và n chẵn.

n2 ≥ 0 với mọi n *.

Do đó, un = – n2 < 0, với mọi n * và n chẵn.

           un = n2 > 0, với mọi n * và n lẻ.

Vậy dãy số (un) không bị chặn.  

Câu hỏi cùng chủ đề

Xem tất cả