Trong các dãy số (un) được xác định như sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn? a) un = n^2 + 2; b) un = – 2n + 1; c) un = 1/n^2 + n

Trong các dãy số (un) được xác định như sau, dãy số nào bị chặn dưới, bị chặn trên, bị chặn?

a) un = n2 + 2;

b) un = – 2n + 1;

c) \({u_n} = \frac{1}{{{n^2} + n}}\).

Trả lời

Lời giải

a) Ta có: n * nên n ≥ 1 suy ra n2 + 2 ≥ 3

Do đó un ≥ 3

Vậy dãy số (un) bị chặn dưới bởi 3.

b) Ta có: n * nên n ≥ 1 suy ra un = – 2n + 1 ≤ – 1

Do đó un ≤ – 1.

Vậy dãy số (un) bị chặn trên bởi – 1.

c) Ta có: \({u_n} = \frac{1}{{{n^2} + n}} = \frac{1}{{n\left( {n + 1} \right)}} = \frac{1}{n} - \frac{1}{{n + 1}}\)

Vì n * nên n ≥ 1 suy ra \(\frac{1}{n} > \frac{1}{{n + 1}} \Rightarrow {u_n} = \frac{1}{n} - \frac{1}{{n + 1}} > 0\)

Ta lại có: \(\frac{1}{n} \le 1\) và \( - \frac{1}{{n + 1}} \le - \frac{1}{2}\) suy ra \({u_n} = \frac{1}{n} - \frac{1}{{n + 1}} \le 1 - \frac{1}{2} = \frac{1}{2}\)

Do đó \(0 < {u_n} \le \frac{1}{2}\)

Vậy dãy số (un) bị chặn.

Câu hỏi cùng chủ đề

Xem tất cả