Chứng minh rằng dãy số (un) với un = n^2 + 1/2n^2 + 4 là bị chặn.

Chứng minh rằng dãy số (un) với \({u_n} = \frac{{{n^2} + 1}}{{2{n^2} + 4}}\) là bị chặn.

Trả lời

Lời giải

Ta có: \({u_n} = \frac{{{n^2} + 1}}{{2{n^2} + 4}} = \frac{1}{2}\left( {\frac{{{n^2} + 1}}{{{n^2} + 2}}} \right) = \frac{1}{2}\left( {1 - \frac{1}{{{n^2} + 2}}} \right) < \frac{1}{2}\).

Ta lại có: \[{u_n} = \frac{{{n^2} + 1}}{{2{n^2} + 4}} > 0\]

Do đó \(0 < {u_n} < \frac{1}{2}\).

Vì vậy dãy số (un) bị chặn.

Câu hỏi cùng chủ đề

Xem tất cả