Trên một sợi dây đàn hồi đang có sóng dừng ổn định với khoảng cách giữa hai vị trí
38
24/05/2024
Trên một sợi dây đàn hồi đang có sóng dừng ổn định với khoảng cách giữa hai vị trí cân bằng của một bụng sóng với một nút sóng cạnh nhau là \(6{\rm{\;cm}}\). Tốc độ truyền sóng trên dây là \(1,2{\rm{\;m}}/{\rm{s}}\) và biên độ dao động của bụng sóng là \(4{\rm{\;cm}}\). Gọi \({\rm{N}}\) là vị trí nút sóng, \({\rm{P}}\) và \({\rm{Q}}\) là hai phần tử trên dây và ở hai bên của \({\rm{N}}\) có vị trí cân bằng cách \({\rm{N}}\) lần lượt là 15 \({\rm{cm}}\) và \(16{\rm{\;cm}}\). Tại thời điểm \({\rm{t}}\), phần tử \({\rm{P}}\) có li độ \(\sqrt 2 {\rm{\;cm}}\) và đang hướng về vị trí cân bằng. Sau thời điểm đó một khoảng thời gian \({\rm{\Delta t}}\) thì phần tử \({\rm{Q}}\) có li độ là \(3{\rm{\;cm}}\), giá trị của \({\rm{\Delta t}}\) là
A. \(0,15{\rm{\;s}}\).
B. \(0,01{\rm{\;s}}\).
C. \(0,02{\rm{\;s}}\).
Trả lời
Chọn D.
\(\frac{{\rm{\lambda }}}{4} = 6{\rm{cm\;}} \Rightarrow {\rm{\lambda }} = 24{\rm{cm\;v\`a \;\omega }} = 2{\rm{\pi }}.\frac{{\rm{v}}}{{\rm{\lambda }}} = 2{\rm{\pi }}.\frac{{120}}{{24}} = 10{\rm{\pi \;}}\left( {{\rm{rad}}/{\rm{s}}} \right)\)
\(A = 4\left| {\sin \left( {\frac{{2\pi d}}{\lambda }} \right)} \right| \Rightarrow \left\{ {\begin{array}{*{20}{c}}{{A_P} = 4\left| {\sin \left( {\frac{{2\pi .15}}{{24}}} \right)} \right| = 2\sqrt 2 cm}\\{{A_Q} = 4\left| {\sin \left( {\frac{{2\pi .16}}{{24}}} \right)} \right| = 2\sqrt 3 cm}\end{array}} \right.\)
P ngược pha Q\( \Rightarrow \frac{{{{\rm{u}}_{\rm{Q}}}}}{{{{\rm{A}}_{\rm{Q}}}}} = - \frac{{{{\rm{u}}_{\rm{P}}}}}{{{{\rm{A}}_{\rm{P}}}}} = - \frac{{\sqrt 2 }}{{2\sqrt 2 }} = - \frac{1}{2}\) và đang hướng về VTCB \( \Rightarrow {{\rm{\varphi }}_{\rm{Q}}} = - \frac{{2{\rm{\pi }}}}{3}\)
\( \Rightarrow {{\rm{u}}_{\rm{Q}}} = 2\sqrt 3 \cos \left( {10{\rm{\pi t}} - \frac{{2{\rm{\pi }}}}{3}} \right)\mathop \to \limits^{{{\rm{u}}_{\rm{Q}}} = 3} \Delta {\rm{t}} = 0,05{\rm{s}}\)