Câu hỏi:
18/12/2023 92
Cho hình vuông ABCD có độ dài cạnh là a và A(0; 0), B(a; 0), C(a; a), D(0; a). Khẳng định nào sau đây là đúng?
Cho hình vuông ABCD có độ dài cạnh là a và A(0; 0), B(a; 0), C(a; a), D(0; a). Khẳng định nào sau đây là đúng?
A. \(\left( {\overrightarrow {AB} ,\overrightarrow {BD} } \right) = {45^0}.\)
A. \(\left( {\overrightarrow {AB} ,\overrightarrow {BD} } \right) = {45^0}.\)
B. \(\left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right) = {45^0}\) và \(\overrightarrow {AC} .\overrightarrow {BC} = {a^2}.\)
B. \(\left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right) = {45^0}\) và \(\overrightarrow {AC} .\overrightarrow {BC} = {a^2}.\)
C. \(\overrightarrow {AC} .\overrightarrow {BD} = {a^2}\sqrt 2 .\)
C. \(\overrightarrow {AC} .\overrightarrow {BD} = {a^2}\sqrt 2 .\)
D. \(\overrightarrow {BA} .\overrightarrow {BD} = - {a^2}.\)
D. \(\overrightarrow {BA} .\overrightarrow {BD} = - {a^2}.\)
Trả lời:
Đáp án đúng là B
Vì ABCD là hình vuông cạnh a nên AB = BC = a, BD = AC = a\(\sqrt 2 \).
Ta có \(\overrightarrow {AB} \left( {a;\,\,0} \right)\), \(\overrightarrow {BD} \left( { - a;\,\,a} \right)\), \(\overrightarrow {AC} \left( {a;\,\,a} \right)\), \(\overrightarrow {BC} \left( {0;\,\,a} \right)\), \(\overrightarrow {BA} \left( { - a;\,\,0} \right)\).
Khi đó:
+) \(\overrightarrow {AB} .\overrightarrow {BD} = a.\left( { - a} \right) + 0.a = - {a^2}\)
\( \Rightarrow \cos \left( {\overrightarrow {AB} ,\overrightarrow {BD} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {BD} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {BD} } \right|}} = \frac{{ - {a^2}}}{{a.a\sqrt 2 }} = \frac{{ - 1}}{{\sqrt 2 }} \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {BD} } \right) = {135^0}.\) Do đó A sai.
+) \(\overrightarrow {AC} .\overrightarrow {BC} \) = a.0 + a.a = a2
\( \Rightarrow \cos \left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {AC} .\overrightarrow {BC} }}{{\left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {BC} } \right|}} = \frac{{{a^2}}}{{a.a\sqrt 2 }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right) = {45^0}.\) Do đó B đúng
+) \(\overrightarrow {AC} .\overrightarrow {BD} = a.\left( { - a} \right) + a.a = 0\). Do đó C sai.
+) \(\overrightarrow {BA} .\overrightarrow {BD} \) = -a.(-a) + 0.a = a2. Do đó D sai.
Đáp án đúng là B
Vì ABCD là hình vuông cạnh a nên AB = BC = a, BD = AC = a\(\sqrt 2 \).
Ta có \(\overrightarrow {AB} \left( {a;\,\,0} \right)\), \(\overrightarrow {BD} \left( { - a;\,\,a} \right)\), \(\overrightarrow {AC} \left( {a;\,\,a} \right)\), \(\overrightarrow {BC} \left( {0;\,\,a} \right)\), \(\overrightarrow {BA} \left( { - a;\,\,0} \right)\).
Khi đó:
+) \(\overrightarrow {AB} .\overrightarrow {BD} = a.\left( { - a} \right) + 0.a = - {a^2}\)
\( \Rightarrow \cos \left( {\overrightarrow {AB} ,\overrightarrow {BD} } \right) = \frac{{\overrightarrow {AB} .\overrightarrow {BD} }}{{\left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {BD} } \right|}} = \frac{{ - {a^2}}}{{a.a\sqrt 2 }} = \frac{{ - 1}}{{\sqrt 2 }} \Rightarrow \left( {\overrightarrow {AB} ,\overrightarrow {BD} } \right) = {135^0}.\) Do đó A sai.
+) \(\overrightarrow {AC} .\overrightarrow {BC} \) = a.0 + a.a = a2
\( \Rightarrow \cos \left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right) = \frac{{\overrightarrow {AC} .\overrightarrow {BC} }}{{\left| {\overrightarrow {AC} } \right|.\left| {\overrightarrow {BC} } \right|}} = \frac{{{a^2}}}{{a.a\sqrt 2 }} = \frac{1}{{\sqrt 2 }} \Rightarrow \left( {\overrightarrow {AC} ,\overrightarrow {BC} } \right) = {45^0}.\) Do đó B đúng
+) \(\overrightarrow {AC} .\overrightarrow {BD} = a.\left( { - a} \right) + a.a = 0\). Do đó C sai.
+) \(\overrightarrow {BA} .\overrightarrow {BD} \) = -a.(-a) + 0.a = a2. Do đó D sai.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Sự chuyển động của một tàu thủy được thể hiện trên một mặt phẳng tọa độ như sau: Tàu khởi hành từ vị trí A(-3; 2) chuyển động thẳng đều với vận tốc (tính theo giờ) được biểu thị bởi vecto \(\overrightarrow v = \left( {2;5} \right).\) Xác định vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 2 giờ.
Sự chuyển động của một tàu thủy được thể hiện trên một mặt phẳng tọa độ như sau: Tàu khởi hành từ vị trí A(-3; 2) chuyển động thẳng đều với vận tốc (tính theo giờ) được biểu thị bởi vecto \(\overrightarrow v = \left( {2;5} \right).\) Xác định vị trí của tàu (trên mặt phẳng tọa độ) tại thời điểm sau khi khởi hành 2 giờ.
Câu 2:
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;1), B(3;3). Tìm điểm M(x;y) để OABM là một hình bình hành.
Trong mặt phẳng tọa độ Oxy, cho hai điểm A(2;1), B(3;3). Tìm điểm M(x;y) để OABM là một hình bình hành.
Câu 3:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có G là trọng tâm. Cho tọa độ các điểm A(1;3), B(2;4), G(-3;2). Tọa độ điểm C là:
Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có G là trọng tâm. Cho tọa độ các điểm A(1;3), B(2;4), G(-3;2). Tọa độ điểm C là:
Câu 4:
Trong mặt phẳng tọa độ Oxy, cho các điểm \(A\left( {k - \frac{1}{3};5} \right)\), B(-2; 12) và
C\(\left( {\frac{2}{3};k - 2} \right)\). Giá trị dương của k thuộc khoảng nào dưới đây thì ba điểm A, B, C thẳng hàng.
Trong mặt phẳng tọa độ Oxy, cho các điểm \(A\left( {k - \frac{1}{3};5} \right)\), B(-2; 12) và
C\(\left( {\frac{2}{3};k - 2} \right)\). Giá trị dương của k thuộc khoảng nào dưới đây thì ba điểm A, B, C thẳng hàng.
Câu 5:
Cho hình bình hành ABCD. Vectơ nào dưới đây bằng \(\overrightarrow {CD} \).
Cho hình bình hành ABCD. Vectơ nào dưới đây bằng \(\overrightarrow {CD} \).
Câu 6:
Trong mặt phẳng tọa độ Oxy, cho B(1; 2) và C(3; -1). Độ dài \(\overrightarrow {BC} \) là:
Trong mặt phẳng tọa độ Oxy, cho B(1; 2) và C(3; -1). Độ dài \(\overrightarrow {BC} \) là:
Câu 8:
Trên mặt phẳng tọa độ Oxy cho tam giác ABC. M, N, P lần lượt là trung điểm cách cạnh BC, CA, AB. Biết M(0; 1); N(-1; 5); P(2; -3). Tọa độ trọng tâm G tam giác ABC là:
Trên mặt phẳng tọa độ Oxy cho tam giác ABC. M, N, P lần lượt là trung điểm cách cạnh BC, CA, AB. Biết M(0; 1); N(-1; 5); P(2; -3). Tọa độ trọng tâm G tam giác ABC là:
Câu 9:
Khi nào tích vô hướng của hai vecto \(\overrightarrow u ,\overrightarrow v \) là một số dương.
Khi nào tích vô hướng của hai vecto \(\overrightarrow u ,\overrightarrow v \) là một số dương.
Câu 10:
Cho tam giác ABC vuông tại A, có AB = 2cm, AC = 7cm. Điểm M là trung điểm của BC. Tính độ dài vectơ AM.
Cho tam giác ABC vuông tại A, có AB = 2cm, AC = 7cm. Điểm M là trung điểm của BC. Tính độ dài vectơ AM.
Câu 12:
Cho hình thoi ABCD có độ dài hai đường chéo AC, BD lần lượt là 8 cm và 6 cm. Tính độ dài vectơ \(\overrightarrow {AB} \).
Cho hình thoi ABCD có độ dài hai đường chéo AC, BD lần lượt là 8 cm và 6 cm. Tính độ dài vectơ \(\overrightarrow {AB} \).
Câu 13:
Trong mặt phẳng tọa độ Oxy, cho điểm A(-1; 3), B(0; 4) và C(2x – 1; 3x2). Tổng các giá trị của x thỏa mãn \(\overrightarrow {AB} .\overrightarrow {AC} = 2\)
Trong mặt phẳng tọa độ Oxy, cho điểm A(-1; 3), B(0; 4) và C(2x – 1; 3x2). Tổng các giá trị của x thỏa mãn \(\overrightarrow {AB} .\overrightarrow {AC} = 2\)
Câu 14:
Trong mặt phẳng tọa độ Oxy, cho các vecto \(\overrightarrow u \left( {2;3x - 3} \right)\) và \(\overrightarrow v \left( { - 1; - 2} \right)\). Có bao nhiêu giá trị nguyên của x thỏa mãn \(\left| {\overrightarrow u } \right| = \left| {2\overrightarrow v } \right|\).
Trong mặt phẳng tọa độ Oxy, cho các vecto \(\overrightarrow u \left( {2;3x - 3} \right)\) và \(\overrightarrow v \left( { - 1; - 2} \right)\). Có bao nhiêu giá trị nguyên của x thỏa mãn \(\left| {\overrightarrow u } \right| = \left| {2\overrightarrow v } \right|\).
Câu 15:
Trong mặt phẳng tọa độ Oxy, cho hai điểm M(3; -1) và N(2; -5). Điểm nào sau đây thẳng hàng với M, N?
Trong mặt phẳng tọa độ Oxy, cho hai điểm M(3; -1) và N(2; -5). Điểm nào sau đây thẳng hàng với M, N?