Câu hỏi:
01/04/2024 29
Tính đạo hàm của hàm số sau: \(y = {\sin ^2}\left( {\cos \left( {{{\tan }^4}3x} \right)} \right)\)
Tính đạo hàm của hàm số sau: \(y = {\sin ^2}\left( {\cos \left( {{{\tan }^4}3x} \right)} \right)\)
A. \(y' = \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^3}3x} \right).3\)
B. \(y' = \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).{\tan ^3}3x.\left( {1 + {{\tan }^3}3x} \right).\)
C. \(y' = \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^3}3x} \right)\)
D. \(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^3}3x} \right).3\)
Trả lời:
Hướng dẫn giải:
Chọn D.
Đầu tiên áp dụng \({\left( {{u^\alpha }} \right)^/},\) với \(u = \sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right)\)
\(y' = 2\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).{\left[ {\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right)} \right]^/}\)
Sau đó áp dụng \({\left( {\sin u} \right)^/},\) với \(u = \cos \left( {{{\tan }^4}3x} \right)\)
\(y' = 2\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).\cos \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).{\left( {\cos \left( {{{\tan }^4}3x} \right)} \right)^/}\)
Áp dụng \({\left( {\cos u} \right)^/},\) với \(u = {\tan ^4}3x.\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).{\left( {{{\tan }^4}3x} \right)^/}.\)
Áp dụng \({\left( {{u^\alpha }} \right)^/},\) với \(u = \tan 3x\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.{\left( {\tan 3x} \right)^/}.\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^2}3x} \right).{\left( {3x} \right)^/}.\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^3}3x} \right).3\).
Hướng dẫn giải:
Chọn D.
Đầu tiên áp dụng \({\left( {{u^\alpha }} \right)^/},\) với \(u = \sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right)\)
\(y' = 2\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).{\left[ {\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right)} \right]^/}\)
Sau đó áp dụng \({\left( {\sin u} \right)^/},\) với \(u = \cos \left( {{{\tan }^4}3x} \right)\)
\(y' = 2\sin \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).\cos \left( {\cos \left( {{{\tan }^4}3x} \right)} \right).{\left( {\cos \left( {{{\tan }^4}3x} \right)} \right)^/}\)
Áp dụng \({\left( {\cos u} \right)^/},\) với \(u = {\tan ^4}3x.\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).{\left( {{{\tan }^4}3x} \right)^/}.\)
Áp dụng \({\left( {{u^\alpha }} \right)^/},\) với \(u = \tan 3x\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.{\left( {\tan 3x} \right)^/}.\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^2}3x} \right).{\left( {3x} \right)^/}.\)
\(y' = - \sin \left( {2\cos \left( {{{\tan }^4}3x} \right)} \right).\left( {\sin \left( {{{\tan }^4}3x} \right)} \right).4{\tan ^3}3x.\left( {1 + {{\tan }^3}3x} \right).3\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Câu 4:
Cho hàm số \(y = \sin \left( {\frac{\pi }{3} - \frac{x}{2}} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Cho hàm số \(y = \sin \left( {\frac{\pi }{3} - \frac{x}{2}} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Câu 5:
Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Câu 6:
Đạo hàm của hàm số \(y = - \frac{2}{{\tan \left( {1 - 2x} \right)}}\) bằng:
Câu 7:
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
Câu 8:
Tính đạo hàm của hàm số sau \(y = {\cos ^2}\left( {{{\sin }^3}x} \right)\)
Tính đạo hàm của hàm số sau \(y = {\cos ^2}\left( {{{\sin }^3}x} \right)\)
Câu 9:
Tính đạo hàm của hàm số sau \(y = \frac{{\sin 2x}}{x} - \frac{x}{{\cos 3x}}\)
Tính đạo hàm của hàm số sau \(y = \frac{{\sin 2x}}{x} - \frac{x}{{\cos 3x}}\)
Câu 14:
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Câu 15:
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)