Câu hỏi:
01/04/2024 58
Tính đạo hàm của hàm số sau: \(y = {\sin ^3}2x.{\cos ^3}2x\)
Tính đạo hàm của hàm số sau: \(y = {\sin ^3}2x.{\cos ^3}2x\)
A. \({\sin ^2}4x.\cos 4x.\)
B. \(\frac{3}{2}{\sin ^2}x.\cos x.\)
C. \({\sin ^2}x.\cos 4x.\)
D. \(\frac{3}{2}{\sin ^2}4x.\cos 4x.\)
Trả lời:
Hướng dẫn giải:
Chọn D.
\(y = {\sin ^3}2x.{\cos ^3}2x = {\left( {\sin 2x.\cos 2x} \right)^3} = {\left( {\frac{1}{2}\sin 4x} \right)^3} = \frac{1}{8}.{\sin ^3}4x\). Áp dụng \({\left( {{u^\alpha }} \right)^/},u = \sin 4x.\)
\(y' = \frac{1}{8}.3{\sin ^2}4x{\left( {\sin 4x} \right)^/} = \frac{1}{8}.3{\sin ^2}4x.\cos 4x.{\left( {4x} \right)^/} = \frac{3}{2}{\sin ^2}4x.\cos 4x.\)
Hướng dẫn giải:
Chọn D.
\(y = {\sin ^3}2x.{\cos ^3}2x = {\left( {\sin 2x.\cos 2x} \right)^3} = {\left( {\frac{1}{2}\sin 4x} \right)^3} = \frac{1}{8}.{\sin ^3}4x\). Áp dụng \({\left( {{u^\alpha }} \right)^/},u = \sin 4x.\)
\(y' = \frac{1}{8}.3{\sin ^2}4x{\left( {\sin 4x} \right)^/} = \frac{1}{8}.3{\sin ^2}4x.\cos 4x.{\left( {4x} \right)^/} = \frac{3}{2}{\sin ^2}4x.\cos 4x.\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Câu 4:
Cho hàm số \(y = \sin \left( {\frac{\pi }{3} - \frac{x}{2}} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Cho hàm số \(y = \sin \left( {\frac{\pi }{3} - \frac{x}{2}} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Câu 5:
Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Câu 6:
Đạo hàm của hàm số \(y = - \frac{2}{{\tan \left( {1 - 2x} \right)}}\) bằng:
Câu 7:
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
Câu 8:
Tính đạo hàm của hàm số sau \(y = {\cos ^2}\left( {{{\sin }^3}x} \right)\)
Tính đạo hàm của hàm số sau \(y = {\cos ^2}\left( {{{\sin }^3}x} \right)\)
Câu 10:
Tính đạo hàm của hàm số sau \(y = \frac{{\sin 2x}}{x} - \frac{x}{{\cos 3x}}\)
Tính đạo hàm của hàm số sau \(y = \frac{{\sin 2x}}{x} - \frac{x}{{\cos 3x}}\)
Câu 13:
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Câu 14:
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)
Câu 15:
Tính đạo hàm của hàm số sau: \(y = {\left( {\sin x + \cos x} \right)^3}\).
Tính đạo hàm của hàm số sau: \(y = {\left( {\sin x + \cos x} \right)^3}\).