Câu hỏi:
01/04/2024 44
Tính đạo hàm của hàm số sau: \(y = {\cos ^2}\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)\).
Tính đạo hàm của hàm số sau: \(y = {\cos ^2}\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)\).
A. \(y' = \frac{1}{{\sqrt x {{\left( {\sqrt x - 1} \right)}^2}}}.\sin \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).\)
B. \[y' = \frac{1}{{\sqrt x {{\left( {\sqrt x - 1} \right)}^2}}}.\cos \left( {2.\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).\]
C. \(y' = \frac{1}{{\sqrt x {{\left( {\sqrt x - 1} \right)}^2}}}.\sin \left( {2.\frac{{\sqrt x - 1}}{{\sqrt x + 1}}} \right).\)
D. \(y' = \frac{1}{{\sqrt x {{\left( {\sqrt x - 1} \right)}^2}}}.\sin \left( {2.\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).\)
Trả lời:
Hướng dẫn giải:
Chọn D.
Áp dụng \({\left( {{u^\alpha }} \right)^/},\) với \(u = \cos \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)\)
\(y' = 2.\cos \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).{\left[ {\cos \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)} \right]^/} = - 2.\cos \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).\sin \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).{\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)^/}\)
\(y' = - \sin \left( {2\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).{\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)^/}.\)
Tính \({\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)^/} = \frac{{{{\left( {\sqrt x + 1} \right)}^/}.\left( {\sqrt x - 1} \right) - {{\left( {\sqrt x - 1} \right)}^/}.\left( {\sqrt x + 1} \right)}}{{{{\left( {\sqrt x - 1} \right)}^2}}} = \frac{{ - 1}}{{\sqrt x {{\left( {\sqrt x - 1} \right)}^2}}}.\)
Vậy \(y' = \frac{1}{{\sqrt x {{\left( {\sqrt x - 1} \right)}^2}}}.\sin \left( {2.\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).\)
Hướng dẫn giải:
Chọn D.
Áp dụng \({\left( {{u^\alpha }} \right)^/},\) với \(u = \cos \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)\)
\(y' = 2.\cos \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).{\left[ {\cos \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)} \right]^/} = - 2.\cos \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).\sin \left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).{\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)^/}\)
\(y' = - \sin \left( {2\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).{\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)^/}.\)
Tính \({\left( {\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right)^/} = \frac{{{{\left( {\sqrt x + 1} \right)}^/}.\left( {\sqrt x - 1} \right) - {{\left( {\sqrt x - 1} \right)}^/}.\left( {\sqrt x + 1} \right)}}{{{{\left( {\sqrt x - 1} \right)}^2}}} = \frac{{ - 1}}{{\sqrt x {{\left( {\sqrt x - 1} \right)}^2}}}.\)
Vậy \(y' = \frac{1}{{\sqrt x {{\left( {\sqrt x - 1} \right)}^2}}}.\sin \left( {2.\frac{{\sqrt x + 1}}{{\sqrt x - 1}}} \right).\)
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Câu 4:
Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Câu 5:
Cho hàm số \(y = \sin \left( {\frac{\pi }{3} - \frac{x}{2}} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Cho hàm số \(y = \sin \left( {\frac{\pi }{3} - \frac{x}{2}} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Câu 6:
Đạo hàm của hàm số \(y = - \frac{2}{{\tan \left( {1 - 2x} \right)}}\) bằng:
Câu 7:
Tính đạo hàm của hàm số sau \(y = {\cos ^2}\left( {{{\sin }^3}x} \right)\)
Tính đạo hàm của hàm số sau \(y = {\cos ^2}\left( {{{\sin }^3}x} \right)\)
Câu 8:
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
Câu 10:
Tính đạo hàm của hàm số sau \(y = \frac{{\sin 2x}}{x} - \frac{x}{{\cos 3x}}\)
Tính đạo hàm của hàm số sau \(y = \frac{{\sin 2x}}{x} - \frac{x}{{\cos 3x}}\)
Câu 13:
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Câu 15:
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)