Tính đạo hàm của hàm số f(x) = 3x3 – 1 tại điểm x0 = 1 bằng định nghĩa.

Tính đạo hàm của hàm số f(x) = 3x3 – 1 tại điểm x0 = 1 bằng định nghĩa.

Trả lời

Xét ∆x là số gia của biến số tại điểm x0 = 1.

Ta có ∆y = f(1 + ∆x) – f(1) = 3(1 + ∆x)3 – 1 – (3.13 – 1)

              = 3 + 9∆x + 9.(∆x)2 + 3(∆x)3 – 1 – 2

              = 9∆x + 9.(∆x)2 + 3(∆x)3

              = ∆x[9 + 9∆x + 3(∆x)2].

Suy ra ΔyΔx=Δx9+9Δx+3Δx2Δx=9+9Δx+3Δx2.

Ta thấy limΔx0ΔyΔx=limΔx09+9Δx+3Δx2=9+90+302=9.

Câu hỏi cùng chủ đề

Xem tất cả