Tìm tập giá trị của các hàm số sau: a) y = 2sin ( x - pi /4) - 1; b) y = căn bậc hai của 1 + cos x - 2
Tìm tập giá trị của các hàm số sau:
a) y = \(2\sin \left( {x - \frac{\pi }{4}} \right) - 1\);
b) y = \(\sqrt {1 + \cos x} - 2\).
Tìm tập giá trị của các hàm số sau:
a) y = \(2\sin \left( {x - \frac{\pi }{4}} \right) - 1\);
b) y = \(\sqrt {1 + \cos x} - 2\).
Lời giải:
a) Ta có: \( - 1 \le \sin \left( {x - \frac{\pi }{4}} \right) \le 1\) với mọi x ∈ ℝ
\( \Leftrightarrow - 2 \le 2\sin \left( {x - \frac{\pi }{4}} \right) \le 2\) với mọi x ∈ ℝ
\( \Leftrightarrow - 2 - 1 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 2 - 1\) với mọi x ∈ ℝ
\( \Leftrightarrow - 3 \le 2\sin \left( {x - \frac{\pi }{4}} \right) - 1 \le 1\) với mọi x ∈ ℝ
⇔ – 3 ≤ y ≤ 1 với mọi x ∈ ℝ.
Vậy tập giá trị của hàm số y = \(2\sin \left( {x - \frac{\pi }{4}} \right) - 1\) là [– 3; 1].
b) Vì – 1 ≤ cos x ≤ 1 với mọi x ∈ ℝ nên 0 ≤ 1 + cos x ≤ 2 với mọi x ∈ ℝ.
Do đó, \(0 \le \sqrt {1 + \cos x} \le \sqrt 2 \) với mọi x ∈ ℝ.
Suy ra \( - 2 \le \sqrt {1 + \cos x} - 2 \le \sqrt 2 - 2\) với mọi x ∈ ℝ.
Hay \( - 2 \le y \le \sqrt 2 - 2\)với mọi x ∈ ℝ.
Vậy tập giá trị của hàm số y = \(\sqrt {1 + \cos x} - 2\) là \(\left[ { - 2;\,\,\sqrt 2 - 2} \right]\).