Cho hàm số y = cot x. a) Xét tính chẵn, lẻ của hàm số. b) Hoàn thành bảng giá trị sau của hàm số y = cot x trên khoảng (0; π). c) Bằng cách làm tương tự câu b cho các khoảng khác có độ dài

Cho hàm số y = cot x.

a) Xét tính chẵn, lẻ của hàm số.

b) Hoàn thành bảng giá trị sau của hàm số y = cot x trên khoảng (0; π).

x

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

y = cot x

?

?

?

?

?

?

?

 Bằng cách lấy nhiều điểm M(x; cot x) với x (0; π) và nối lại ta được đồ thị hàm số y = cot x trên khoảng (0; π).

c) Bằng cách làm tương tự câu b cho các khoảng khác có độ dài bằng chu kì T = π, ta được đồ thị của hàm số y = cot x như hình dưới đây.

Media VietJack

Từ đồ thị ở Hình 1.17, hãy tìm tập giá trị và các khoảng nghịch biến của hàm số y = cotx.

Trả lời

Lời giải: a) Hàm số y = f(x) = cot x có tập xác định là D = ℝ \ {kπ | k ℤ}.

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = cot (– x) = – cot x = – f(x), x D.

Vậy y = cot x là hàm số lẻ.

b) Ta có: \(\cot \frac{\pi }{6} = \sqrt 3 ,\cot \frac{\pi }{4} = 1,\,\cot \frac{\pi }{3} = \frac{{\sqrt 3 }}{3},\cot \frac{\pi }{2} = 0\),

 \(\cot \frac{{2\pi }}{3} = - \frac{{\sqrt 3 }}{3},\cot \frac{{3\pi }}{4} = - 1,\,\cot \frac{{5\pi }}{6} = - \sqrt 3 \).

Vậy ta hoàn thành được bảng như sau:

x

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

\(\frac{\pi }{2}\)

\(\frac{{2\pi }}{3}\)

\(\frac{{3\pi }}{4}\)

\(\frac{{5\pi }}{6}\)

y = cot x

\(\sqrt 3 \)

1

\(\frac{{\sqrt 3 }}{3}\)

0

\( - \frac{{\sqrt 3 }}{3}\)

– 1

\( - \sqrt 3 \)

 c) Quan sát Hình 1.17, ta thấy đồ thị hàm số y = cot x có:

+) Tập giá trị là ℝ;

+) Nghịch biến trên mỗi khoảng \(\left( {k\pi ;\,\pi + k\pi } \right),\,k \in \mathbb{Z}\) (do đồ thị hàm số đi xuống từ trái sang phải trên mỗi khoảng này).

Câu hỏi cùng chủ đề

Xem tất cả