Cho hàm số y = tan x. a) Xét tính chẵn, lẻ của hàm số. b) Hoàn thành bảng giá trị sau của hàm số y = tan x trên khoảng ( - pi/2; pi /2).

Cho hàm số y = tan x.

a) Xét tính chẵn, lẻ của hàm số.

b) Hoàn thành bảng giá trị sau của hàm số y = tan x trên khoảng \(\left( { - \frac{\pi }{2};\,\frac{\pi }{2}} \right)\).

x

\( - \frac{\pi }{3}\)

\( - \frac{\pi }{4}\)

\( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

y = tan x

?

?

?

?

?

?

?

Bằng cách lấy nhiều điểm M(x; tan x) với x \(\left( { - \frac{\pi }{2};\,\frac{\pi }{2}} \right)\) và nối lại ta được đồ thị hàm số y = tan x trên khoảng \(\left( { - \frac{\pi }{2};\,\frac{\pi }{2}} \right)\).

c) Bằng cách làm tương tự câu b cho các khoảng khác có độ dài bằng chu kì T = π, ta được đồ thị của hàm số y = tan x như hình dưới đây.

Media VietJack

Từ đồ thị ở Hình 1.16, hãy tìm tập giá trị và các khoảng đồng biến của hàm số y = tan x.

Trả lời

Lời giải:

a) Hàm số y = f(x) = tan x có tập xác định là D = ℝ \ \(\left\{ {\frac{\pi }{2} + k\pi |k \in \mathbb{Z}} \right\}\).

Do đó, nếu x thuộc tập xác định D thì – x cũng thuộc tập xác định D.

Ta có: f(– x) = tan (– x) = – tan x = – f(x), x D.

Vậy y = tan x là hàm số lẻ.

b) Ta có: tan 0 = 0, \(\tan \frac{\pi }{4} = 1,\tan \frac{\pi }{3} = \sqrt 3 ,\tan \frac{\pi }{6} = \frac{{\sqrt 3 }}{3}\).

Vì y = tan x là hàm số lẻ nên \(\tan \left( { - \frac{\pi }{4}} \right) = - \tan \frac{\pi }{4} = - 1\), \(\tan \left( { - \frac{\pi }{3}} \right) = - \tan \frac{\pi }{3} = - \sqrt 3 \),

\(\tan \left( { - \frac{\pi }{6}} \right) = - \tan \frac{\pi }{6} = - \frac{{\sqrt 3 }}{3}\).

Vậy ta hoàn thành được bảng như sau:

x

\( - \frac{\pi }{3}\)

\( - \frac{\pi }{4}\)

\( - \frac{\pi }{6}\)

0

\(\frac{\pi }{6}\)

\(\frac{\pi }{4}\)

\(\frac{\pi }{3}\)

y = tan x

\( - \sqrt 3 \)

– 1

\( - \frac{{\sqrt 3 }}{3}\)

0

\(\frac{{\sqrt 3 }}{3}\)

1

\(\sqrt 3 \)

 c) Quan sát Hình 1.16, ta thấy đồ thị hàm số y = tan x có:

+) Tập giá trị là ℝ;

+) Đồng biến trên mỗi khoảng \(\left( { - \frac{\pi }{2} + k\pi ;\,\,\frac{\pi }{2} + k\pi } \right),\,k \in \mathbb{Z}\) (do đồ thị hàm số đi lên từ trái sang phải trên mỗi khoảng này).

Câu hỏi cùng chủ đề

Xem tất cả