Tìm giá trị của phân thức: A=(3.x^2+3.x)/(x^2+2.x+1) tại x = ‒ 4

Bài 3 trang 30 Toán 8 Tập 1: Tìm giá trị của phân thức:

a) A=3x2+3xx2+2x+1 tại x = ‒ 4;

b) B=abb2a2b2 tại a = 4, b = ‒2.

Trả lời

a) Xét phân thức A=3x2+3xx2+2x+1=3xx+1x+12

Điều kiện xác định của phân thức A là (x + 1)2 ≠ 0, hay x + 1 ≠ 0, do đó x ≠ –1.

Với điều kiện xác định x ≠ –1 thì A=3x2+3xx2+2x+1=3xx+1x+12=3xx+1.

Tại x = ‒ 4 (điều kiện xác định được thỏa mãn), ta có:

A=3.44+1=123=4.

b) Xét phân thức B=abb2a2b2.

Điều kiện xác định của phân thức B là a2 – b2 ≠ 0 (nghĩa là các giá trị của a và b thỏa mãn a2 – b2 ≠ 0).

Với điều kiện xác định trên thì B=abb2a2b2=baba+bab=ba+b.

Tại a = 4 và b = ‒2 thì a2 – b2 = 12 ≠ 0 nên điều kiện xác định được thỏa mãn.

Khi đó, B=24+2=22=1.

Xem thêm lời giải bài tập SGK Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Hằng đẳng thức đáng nhớ

Bài 4: Phân tích đa thức thành nhân tử

Bài 5: Phân thức đại số

Bài 6: Cộng, trừ phân thức

Bài 7: Nhân, chia phân thức

Bài tập cuối chương 1

Câu hỏi cùng chủ đề

Xem tất cả