Chứng tỏ hai phân thức (a^2-b^2)/(a^2 b+a.b^2 ) và (a-b)/a.b

Thực hành 4 trang 29 Toán 8 Tập 1: Chứng tỏ hai phân thức a2b2a2b+ab2 và abab bằng nhau theo hai cách khác nhau

Trả lời

Cách 1:

Xét hai phân thức a2b2a2b+ab2 và abab ta có:

(a2 – b2).ab = a3b – ab3;

(a2b + ab2)(a – b) = a3b – a2b2 + a2b2 – ab3 = a3b – ab3.

Do đó (a2 – b2).ab = (a2b + ab2)(a – b).

Vậy a2b2a2b+ab2 = abab.

Cách 2: Dùng tính chất cơ bản của phân thức

Ta có a2b2a2b+ab2=a+bababa+b=abab.

Vậy a2b2a2b+ab2 = abab.

Xem thêm lời giải bài tập SGK Toán lớp 8 Chân trời sáng tạo hay, chi tiết khác:

Bài 3: Hằng đẳng thức đáng nhớ

Bài 4: Phân tích đa thức thành nhân tử

Bài 5: Phân thức đại số

Bài 6: Cộng, trừ phân thức

Bài 7: Nhân, chia phân thức

Bài tập cuối chương 1

Câu hỏi cùng chủ đề

Xem tất cả