Tìm các hệ số p và q của đa thức F(x) = x^2 + px + q, biết rằng với số a tùy ý, giá trị của F(x) tại x = a, tức là F(a) luôn bằng (a + 2)^2

Bài 7.14 trang 25 SBT Toán Tập 2: Tìm các hệ số p và q của đa thức F(x) = x2 + px + q, biết rằng với số a tùy ý, giá trị của F(x) tại x = a, tức là F(a) luôn bằng (a + 2)2.

Trả lời

Theo đề bài, với a là một số tùy ý, ta luôn có:

a2 + pa + q = (a + 2)2 (1)

Chọn a = 0 thì phương trình (1) trở thành :

0 + 0p + q = (2 + 2)2 suy ra q = 4

Khi đó F(a) = a2 + pa + 4 = (a + 2)2 (2)

Chọn a = 1 thì phương trình (2) trở thành:

12 + p.1 + 4 = (1 + 2)2

1 + p + 4 = 32

p = 9 − 1 − 4 = 4

Vậy q = 4 và p = 4.

Xem thêm lời giải bài tập Toán lớp 7 Kết nối tri thức hay, chi tiết khác:

Ôn tập chương 6

Bài 24: Biểu thức đại số

Bài 25: Đa thức một biến

Bài 26: Phép cộng và phép trừ đa thức một biến

Bài 27: Phép nhân đa thức một biến

Bài 28: Phép chia đa thức một biến

Câu hỏi cùng chủ đề

Xem tất cả