Câu hỏi:

03/04/2024 25

Tìm các giá trị của tham số m để phương trình \({\sin ^6}x + {\cos ^6}x = {\cos ^2}2x + m\) có nghiệm \(x \in \left[ {0;\,\,\frac{\pi }{8}} \right]\).

A. \(0 \le m \le \frac{1}{8}\).

Đáp án chính xác

B. \( - \frac{1}{8} \le m \le \frac{1}{8}\).

C. m18.

D. \( - \frac{1}{8} \le m \le 0\).

Trả lời:

verified Giải bởi Vietjack

Đáp án A

Phương pháp:

\({\sin ^6}x + {\cos ^6}x = {\left( {{{\sin }^2}x + {{\cos }^2}x} \right)^3} - 3{\sin ^2}x.{\cos ^2}x.\left( {{{\sin }^2}x + {{\cos }^2}x} \right) = 1 - 3{\sin ^2}x.{\cos ^2}x\)

\({\sin ^2}x = \frac{{1 - \cos 2x}}{2};\,\,{\cos ^2}x = \frac{{1 + \cos 2x}}{2}\)

Cách giải:

Ta có: \({\sin ^6}x + {\cos ^6}x = {\cos ^2}2x + m \Leftrightarrow 1 - 3{\sin ^2}x.{\cos ^2}x = {\cos ^2}2x + m \Leftrightarrow 1 - \frac{3}{4}{\sin ^2}2x = {\cos ^2}2x + m\)

\( \Leftrightarrow 1 - \frac{3}{4}.\frac{{1 - \cos 4x}}{2} = \frac{{1 + \cos 4x}}{2} + m \Leftrightarrow 8 - 3 + 3\cos 4x = 4 + 4\cos 4x + 8m \Leftrightarrow \cos 4x = 1 - 8m\)

Do \(x \in \left[ {0;\,\,\frac{\pi }{8}} \right] \Rightarrow 4x \in \left[ {0;\,\,\frac{\pi }{2}} \right] \Rightarrow 0 \le \cos 4x \le 1\).

Để phương trình đã cho có nghiệm thì \(0 \le 1 - 8m \le 1 \Leftrightarrow 0 \le m \le \frac{1}{8}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

a) Gọi a, b, c lần lượt là hệ số của các số hạng chứa \[{x^2}\], số hạng chứa \[{x^4}\], số hạng chứa \[{x^6}\] trong khai triển biểu thức \[{\left( {\frac{x}{2} - 4m} \right)^{12}}\] thành đa thức. Tìm m để \[a = bc\].

Xem đáp án » 03/04/2024 48

Câu 2:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AD và BC. Giao tuyến của hai mặt phẳng (SMN) và (SAC) là đường thẳng nào:

Xem đáp án » 03/04/2024 47

Câu 3:

Từ một hộp chứa 16 thẻ được đánh số từ 1 đến 16, chọn ngẫu nhiên 4 thẻ. Tính xác suất để 4 thẻ được chọn đều là số chẵn.

Xem đáp án » 03/04/2024 44

Câu 4:

Trong hệ trục tọa độ Oxy, cho đường tròn (C) có phương trình \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 4\). Hỏi phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số \(k = \frac{1}{2}\) và phép quay tâm O góc quay \(180^\circ \) sẽ biến đường tròn (C) thành đường tròn nào trong các đường tròn có phương trình sau:

Xem đáp án » 03/04/2024 43

Câu 5:

Có hai xạ thủ cùng bắn vào bia. Xác suất người thứ nhất bắn trúng bia là 0,8; người thứ hai bắn trúng bia là 0,6. Xác suất để có ít nhất một người bắn trúng là:

Xem đáp án » 03/04/2024 42

Câu 6:

Một lớp học có 30 học sinh được xếp thành một hàng dọc. Tính xác suất  để hai bạn An và Hà đứng cạnh nhau?

Xem đáp án » 03/04/2024 42

Câu 7:

Tập giá trị của hàm số \(y = \frac{{2\sin 2{\rm{x}} + \cos 2x}}{{\sin 2x - \cos 2x + 3}}\) có tất cả bao nhiêu giá trị nguyên?

Xem đáp án » 03/04/2024 41

Câu 8:

Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của AB, BC, CD. Thiết diện của tứ diện cắt bởi mp(MNP) là hình gì trong các hình sau?

Xem đáp án » 03/04/2024 39

Câu 9:

Tập xác định của hàm số \(y = \sqrt[3]{{\sin 2{\rm{x}} - \tan x}}\) là:

Xem đáp án » 03/04/2024 38

Câu 10:

b) \(\frac{{\cos \left( {\frac{{7\pi }}{2} - 2x} \right) - \sqrt 3 \cos \left( {2x - 3\pi } \right) + 2\cos x}}{{1 - 2\sin x}} = 0\)

Xem đáp án » 03/04/2024 38

Câu 11:

b) Lớp 11A có 10 học sinh nữ và một số học sinh nam. Cần chọn 5 học sinh tham gia đội văn nghệ của trường. Biết xác suất cả 5 học sinh được chọn toàn nam bằng \[\frac{7}{{15}}\] xác suất để trong 5 học sinh được chọn 2 nữ. Hỏi lớp 11A có bao nhiêu học sinh?

Xem đáp án » 03/04/2024 38

Câu 12:

Có bao nhiêu cách chọn 6 học sinh đổi trực nhật từ một lớp 50 học sinh?

Xem đáp án » 03/04/2024 37

Câu 13:

Một đa giác lồi có 35 đường chéo. Hỏi đa giác đó có bao nhiêu đỉnh?

Xem đáp án » 03/04/2024 37

Câu 14:

Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy lớn \(BC = 2{\rm{a}}\)\(A{\rm{D}} = AB = a\). Mặt bên SAD là tam giác đều. Gọi M là điểm bất kì thuộc cạnh AB. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với SA, BC, cắt CD, SC, SB lần lượt tại N, P, Q.

a) Chứng minh: \(PN//\left( {SA{\rm{D}}} \right)\).

b) Gọi E là giao điểm của MQ và NP. Chứng minh rằng E luôn nằm trên một đường thẳng cố định.

c) Giả sử \(AM = x\,\left( {0 < x < a} \right)\). Tính diện tích thiết diện tạo bởi mặt phẳng \(\left( \alpha \right)\) với hình chóp S.ABCD theo a và x. Tìm vị trí của M để thiết diện đạt giá trị lớn nhất?

Media VietJack

Xem đáp án » 03/04/2024 37

Câu 15:

Cho tứ diện ABCD đều cạnh a. Gọi G là trọng tâm tam giác ABC, mặt phẳng (CGD) cắt tứ diện theo một thiết diện có diện tích là:

Xem đáp án » 03/04/2024 36