Câu hỏi:

03/04/2024 37

Một đa giác lồi có 35 đường chéo. Hỏi đa giác đó có bao nhiêu đỉnh?

A. 8.

B. 9.

C. 11.

D. 10.

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Đáp án D

Phương pháp:

Số đường chéo của một đa giác n đỉnh là \(C_n^2 - n,\,\,n \in \mathbb{N},\,\,n \ge 3\).

Cách giải:

Số đường chéo của một đa giác n đỉnh là \(C_n^2 - n,\,\,n \in \mathbb{N},\,\,n \ge 3\)

Theo đề bài, ta có: \(C_n^2 - n = 35 \Leftrightarrow \frac{{n\left( {n - 1} \right)}}{2} - n = 35 \Leftrightarrow {n^2} - 3n - 70 = 0 \Leftrightarrow \left[ \begin{array}{l}n = 10\,\left( {TM} \right)\\n = - 7\,\left( L \right)\end{array} \right.\)

Vậy, đa giác đó có 10 đỉnh.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N lần lượt là trung điểm của AD và BC. Giao tuyến của hai mặt phẳng (SMN) và (SAC) là đường thẳng nào:

Xem đáp án » 03/04/2024 47

Câu 2:

a) Gọi a, b, c lần lượt là hệ số của các số hạng chứa \[{x^2}\], số hạng chứa \[{x^4}\], số hạng chứa \[{x^6}\] trong khai triển biểu thức \[{\left( {\frac{x}{2} - 4m} \right)^{12}}\] thành đa thức. Tìm m để \[a = bc\].

Xem đáp án » 03/04/2024 47

Câu 3:

Từ một hộp chứa 16 thẻ được đánh số từ 1 đến 16, chọn ngẫu nhiên 4 thẻ. Tính xác suất để 4 thẻ được chọn đều là số chẵn.

Xem đáp án » 03/04/2024 44

Câu 4:

Trong hệ trục tọa độ Oxy, cho đường tròn (C) có phương trình \({\left( {x - 2} \right)^2} + {\left( {y - 2} \right)^2} = 4\). Hỏi phép đồng dạng có được bằng cách thực hiện liên tiếp phép vị tự tâm O tỉ số \(k = \frac{1}{2}\) và phép quay tâm O góc quay \(180^\circ \) sẽ biến đường tròn (C) thành đường tròn nào trong các đường tròn có phương trình sau:

Xem đáp án » 03/04/2024 43

Câu 5:

Có hai xạ thủ cùng bắn vào bia. Xác suất người thứ nhất bắn trúng bia là 0,8; người thứ hai bắn trúng bia là 0,6. Xác suất để có ít nhất một người bắn trúng là:

Xem đáp án » 03/04/2024 42

Câu 6:

Một lớp học có 30 học sinh được xếp thành một hàng dọc. Tính xác suất  để hai bạn An và Hà đứng cạnh nhau?

Xem đáp án » 03/04/2024 42

Câu 7:

Tập giá trị của hàm số \(y = \frac{{2\sin 2{\rm{x}} + \cos 2x}}{{\sin 2x - \cos 2x + 3}}\) có tất cả bao nhiêu giá trị nguyên?

Xem đáp án » 03/04/2024 41

Câu 8:

Cho tứ diện ABCD. Gọi M, N, P lần lượt là trung điểm của AB, BC, CD. Thiết diện của tứ diện cắt bởi mp(MNP) là hình gì trong các hình sau?

Xem đáp án » 03/04/2024 39

Câu 9:

Tập xác định của hàm số \(y = \sqrt[3]{{\sin 2{\rm{x}} - \tan x}}\) là:

Xem đáp án » 03/04/2024 38

Câu 10:

b) \(\frac{{\cos \left( {\frac{{7\pi }}{2} - 2x} \right) - \sqrt 3 \cos \left( {2x - 3\pi } \right) + 2\cos x}}{{1 - 2\sin x}} = 0\)

Xem đáp án » 03/04/2024 38

Câu 11:

Có bao nhiêu cách chọn 6 học sinh đổi trực nhật từ một lớp 50 học sinh?

Xem đáp án » 03/04/2024 37

Câu 12:

b) Lớp 11A có 10 học sinh nữ và một số học sinh nam. Cần chọn 5 học sinh tham gia đội văn nghệ của trường. Biết xác suất cả 5 học sinh được chọn toàn nam bằng \[\frac{7}{{15}}\] xác suất để trong 5 học sinh được chọn 2 nữ. Hỏi lớp 11A có bao nhiêu học sinh?

Xem đáp án » 03/04/2024 37

Câu 13:

Cho hình chóp S.ABCD có đáy là hình thang ABCD với đáy lớn \(BC = 2{\rm{a}}\)\(A{\rm{D}} = AB = a\). Mặt bên SAD là tam giác đều. Gọi M là điểm bất kì thuộc cạnh AB. Mặt phẳng \(\left( \alpha \right)\) đi qua M và song song với SA, BC, cắt CD, SC, SB lần lượt tại N, P, Q.

a) Chứng minh: \(PN//\left( {SA{\rm{D}}} \right)\).

b) Gọi E là giao điểm của MQ và NP. Chứng minh rằng E luôn nằm trên một đường thẳng cố định.

c) Giả sử \(AM = x\,\left( {0 < x < a} \right)\). Tính diện tích thiết diện tạo bởi mặt phẳng \(\left( \alpha \right)\) với hình chóp S.ABCD theo a và x. Tìm vị trí của M để thiết diện đạt giá trị lớn nhất?

Media VietJack

Xem đáp án » 03/04/2024 37

Câu 14:

Cho tứ diện ABCD đều cạnh a. Gọi G là trọng tâm tam giác ABC, mặt phẳng (CGD) cắt tứ diện theo một thiết diện có diện tích là:

Xem đáp án » 03/04/2024 36

Câu 15:

Cho hình chóp S.ABCD. Gọi M, N lần lượt là trọng tâm tam giác SAB, SAD. Gọi P là trung điểm của BC. Mệnh đề nào sau đây đúng?

Xem đáp án » 03/04/2024 35