Tiếp tuyến của đồ thị hàm số y = x(x – 1)^2 + x^2 + 1 tại điểm A(−1; −2) có phương trình là
Tiếp tuyến của đồ thị hàm số y = x(x – 1)2 + x2 + 1 tại điểm A(−1; −2) có phương trình là
A. y = 6x + 4.
B. y = 6x − 4.
C. y = −2x − 4.
D. y = −2x + 4.
Tiếp tuyến của đồ thị hàm số y = x(x – 1)2 + x2 + 1 tại điểm A(−1; −2) có phương trình là
A. y = 6x + 4.
B. y = 6x − 4.
C. y = −2x − 4.
D. y = −2x + 4.
Đáp án đúng là: A
Có y' = [x(x – 1)2 + x2 + 1]' = (x – 1)2 + 2x(x – 1) + 2x
= x2 – 2x + 1 + 2x2 – 2x + 2x = 3x2 – 2x + 1.
Có y'(−1) = 3×(−1)2 – 2×(−1) + 1 = 6.
Phương trình tiếp tuyến của đồ thị hàm số y = x(x – 1)2 + x2 + 1 tại điểm A(−1; −2) có dạng: y = y'(−1)×(x + 1) – 2 = 6×(x + 1) – 2 = 6x + 6 – 2 = 6x + 4.
Vậy y = 6x + 4 là tiếp tuyến cần tìm.