Sử dụng công thức biến đổi tích thành tổng và đặt a + b = u; a − b = v rồi biến đổi các
25
28/07/2024
Sử dụng công thức biến đổi tích thành tổng và đặt a + b = u; a − b = v rồi biến đổi các biểu thức sau thành tích: cosu + cosv; cosu – cos v; sinu + sinv; sinu – sinv.
Trả lời
Ta có \(\left\{ \begin{array}{l}a + b = u\\a - b = v\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{{u + v}}{2}\\b = \frac{{u - v}}{2}\end{array} \right.\).
Khi đó:
• cosu + cosv = cos(a + b) + cos(a – b)
= 2cosa cosb
\( = 2\cos \frac{{u + v}}{2}\cos \frac{{u - v}}{2}\).
• cosu – cosv = cos(a + b) – cos(a – b)
= –2sina sinb
\( = - 2\sin \frac{{u + v}}{2}\sin \frac{{u - v}}{2}\).
• sinu + sinv = sin(a + b) + sin(a – b)
= 2sina cosb
\( = 2\sin \frac{{u + v}}{2}\cos \frac{{u - v}}{2}\).
• sinu – sinv = sin(a + b) – sin(a – b)
= sin(b + a) + sin(b – a)
= 2sinb cosa = 2cosa sinb
\( = 2\cos \frac{{u + v}}{2}\sin \frac{{u - v}}{2}\).