Cho cos2a = 1/3 với pi/2 < a < pi. Tính: sina, cosa, tana
Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.
Cho \(cos2a = \frac{1}{3}\) với \(\frac{\pi }{2} < a < \pi \). Tính: sina, cosa, tana.
Do \(\frac{\pi }{2} < a < \pi \) nên cosa < 0 và sina > 0.
Áp dụng công thức hạ bậc ta có:
• \({\sin ^2}a = \frac{{1 - \cos 2a}}{2} = \frac{{1 - \frac{1}{3}}}{2} = \frac{1}{3}\) \( \Rightarrow \sin a = \frac{{\sqrt 3 }}{3}\) (do sina > 0).
• \({\cos ^2}a = \frac{{1 + \cos 2a}}{2} = \frac{{1 + \frac{1}{3}}}{2} = \frac{2}{3}\) \( \Rightarrow \cos a = - \frac{{\sqrt 6 }}{3}\) (do cosa < 0).
Khi đó: \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{{\sqrt 3 }}{3}}}{{ - \frac{{\sqrt 6 }}{3}}}\)\( = - \frac{{\sqrt 2 }}{2}\).
Vậy \(\sin a = \frac{{\sqrt 3 }}{3},\cos a = - \frac{{\sqrt 6 }}{3}\) và \(\tan a = - \frac{{\sqrt 2 }}{2}\).