Cho cos2x = 1/4. Tính: A = cos(x + pi/6) cos(x - pi/6); B = sin(x + pi.3)sin(x - pi/3)
Cho cos2x=14. Tính: A=cos(x+π6)cos(x−π6); B=sin(x+π3)sin(x−π3).
Cho cos2x=14. Tính: A=cos(x+π6)cos(x−π6); B=sin(x+π3)sin(x−π3).
Ta có:
A=cos(x+π6)cos(x−π6)
=12[cos(x+π6+x−π6)+cos(x+π6−x+π6)]
=12[cos2x+cosπ3]
=12[14+12]=38.
B=sin(x+π3)sin(x−π3)
=−12[cos(x+π3+x−π3)−cos(x+π3−x+π3)]
=−12[cos2x−cos2π3]
=−12[14−(−12)]=−38.
Vậy A=38,B=−38.