Có hai chung cư cao tầng I và II xây cạnh nhau với khoảng cách giữa chúng là HK = 20

Có hai chung cư cao tầng I và II xây cạnh nhau với khoảng cách giữa chúng là HK = 20 m. Để đảm bảo an ninh, trên nóc chung cư II người ta lắp camera ở vị trí C. Gọi A, B lần lượt là vị trí thấp nhất, cao nhất trên chung cư I mà camera có thể quan sát được (Hình 18). Hãy tính số đo góc ACB (phạm vi camera có thể quan sát được ở chung cư I). Biết rằng chiều cao của chung cư II là CK = 32 m, AH = 6 m, BH = 24 m (làm tròn kết quả đến hàng phần mười theo đơn vị độ).

Có hai chung cư cao tầng I và II xây cạnh nhau với khoảng cách giữa chúng là HK = 20  (ảnh 1)

Trả lời
Có hai chung cư cao tầng I và II xây cạnh nhau với khoảng cách giữa chúng là HK = 20  (ảnh 2)

Kẻ AM CK, BN CK (hình vẽ) ta có:

BN = AM = HK = 20 (m);

CN = CK – NK = CK – BH = 32 – 24 = 8 (m);

MN = AB = BH – AH = 24 – 6 = 18 (m);

CM = CN + MN = 8 + 18 = 26 (m).

Đặt \(\widehat {BCN} = \alpha ,\widehat {ACM} = \beta \).

Xét DBCN vuông tại N có: \(\tan \alpha = \frac{{BN}}{{CN}} = \frac{{20}}{8} = \frac{5}{2}\);

Xét DACM vuông tại M có: \(\tan \beta = \frac{{AM}}{{CM}} = \frac{{20}}{{26}} = \frac{{10}}{{13}}\);

Ta có: \(\tan \widehat {ACB} = \tan \left( {\widehat {BCN} - \widehat {ACM}} \right) = \tan \left( {\alpha - \beta } \right)\)

     \[ \Rightarrow \tan \widehat {ACB} = \frac{{\tan \alpha - \tan \beta }}{{1 + \tan \alpha \tan \beta }} = \frac{{\frac{5}{2} - \frac{{10}}{{13}}}}{{1 + \frac{5}{2}.\frac{{10}}{{13}}}} = \frac{{45}}{{76}}\].

     \( \Rightarrow \widehat {ACB} \approx 31^\circ \).

Vậy góc ACB (phạm vi camera có thể quan sát được ở chung cư I) có số đo xấp xỉ 31°.

Câu hỏi cùng chủ đề

Xem tất cả