Câu hỏi:
19/01/2024 138
Một tổ có 9 học sinh, trong đó có 5 học sinh nam và 4 học sinh nữ được xếp thành hàng dọc. Xác suất sao cho 5 học sinh nam đứng kề nhau là:
Một tổ có 9 học sinh, trong đó có 5 học sinh nam và 4 học sinh nữ được xếp thành hàng dọc. Xác suất sao cho 5 học sinh nam đứng kề nhau là:
A.
B.
C.
D.
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Một tổ có 9 học sinh được xếp thành hàng dọc.
Suy ra số phần tử của không gian mẫu là: n(Ω) = 9!.
Gọi biến cố A: “5 học sinh nam đứng kề nhau”.
• Xếp 5 học sinh nam đứng kề nhau thì sẽ có 5! cách xếp.
• Sau đó ta coi 5 học sinh nam là 1 “người A”, rồi xếp “người A” cùng với 4 bạn nữ kia, tức là xếp 5 người, ta lại có 5! cách xếp.
Vì vậy n(A) = 5!.5!.
Vậy xác suất của biến cố A là: .
Ta chọn phương án A.
Hướng dẫn giải
Đáp án đúng là: A
Một tổ có 9 học sinh được xếp thành hàng dọc.
Suy ra số phần tử của không gian mẫu là: n(Ω) = 9!.
Gọi biến cố A: “5 học sinh nam đứng kề nhau”.
• Xếp 5 học sinh nam đứng kề nhau thì sẽ có 5! cách xếp.
• Sau đó ta coi 5 học sinh nam là 1 “người A”, rồi xếp “người A” cùng với 4 bạn nữ kia, tức là xếp 5 người, ta lại có 5! cách xếp.
Vì vậy n(A) = 5!.5!.
Vậy xác suất của biến cố A là: .
Ta chọn phương án A.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gieo đồng thời hai xúc xắc 6 mặt cân đối và đồng chất. Xác suất để hiệu số chấm các mặt xuất hiện của hai xúc xắc bằng 2 là:
Gieo đồng thời hai xúc xắc 6 mặt cân đối và đồng chất. Xác suất để hiệu số chấm các mặt xuất hiện của hai xúc xắc bằng 2 là:
Câu 2:
Chọn ngẫu nhiên một số tự nhiên có 4 chữ số khác nhau. Gọi A là biến cố “Số tự nhiên được chọn gồm 4 số 3; 4; 5; 6”. Xác suất của biến cố A là:
Chọn ngẫu nhiên một số tự nhiên có 4 chữ số khác nhau. Gọi A là biến cố “Số tự nhiên được chọn gồm 4 số 3; 4; 5; 6”. Xác suất của biến cố A là:
Câu 3:
Một hộp đựng 1 viên bi màu xanh, 1 viên bi màu đỏ và 1 viên bi màu trắng. Lấy ngẫu nhiên một viên bi và xem màu của viên bi đó rồi đặt lại vào hộp, thử nghiệm 3 lần liên tiếp. Xác suất để có ít nhất 2 lần lấy viên bi cùng màu là:
Một hộp đựng 1 viên bi màu xanh, 1 viên bi màu đỏ và 1 viên bi màu trắng. Lấy ngẫu nhiên một viên bi và xem màu của viên bi đó rồi đặt lại vào hộp, thử nghiệm 3 lần liên tiếp. Xác suất để có ít nhất 2 lần lấy viên bi cùng màu là:
Câu 4:
Một lớp có 30 học sinh, trong đó có 8 học sinh giỏi, 15 học sinh khá và 7 học sinh trung bình. Chọn ngẫu nhiên 3 học sinh đi dự đại hội. Xác suất để trong 3 học sinh được chọn không có học sinh trung bình là:
Một lớp có 30 học sinh, trong đó có 8 học sinh giỏi, 15 học sinh khá và 7 học sinh trung bình. Chọn ngẫu nhiên 3 học sinh đi dự đại hội. Xác suất để trong 3 học sinh được chọn không có học sinh trung bình là:
Câu 5:
Xét các số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1; 3; 5; 7; 9. Xác suất để tìm được một số không có dạng là:
Xét các số tự nhiên gồm 5 chữ số khác nhau được lập từ các số 1; 3; 5; 7; 9. Xác suất để tìm được một số không có dạng là:
Câu 6:
Một hội nghị có 15 nam và 6 nữ. Chọn ngẫu nhiên 3 người vào ban tổ chức. Xác suất để 3 người được chọn là nam là:
Một hội nghị có 15 nam và 6 nữ. Chọn ngẫu nhiên 3 người vào ban tổ chức. Xác suất để 3 người được chọn là nam là:
Câu 7:
Một lớp học có 20 học sinh nam và 15 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh lên bảng giải bài tập. Xác suất để 4 học sinh được chọn có cả nam và nữ là:
Một lớp học có 20 học sinh nam và 15 học sinh nữ. Giáo viên chọn ngẫu nhiên 4 học sinh lên bảng giải bài tập. Xác suất để 4 học sinh được chọn có cả nam và nữ là: