Câu hỏi:
01/02/2024 53
Một hình chữ nhật có hai cạnh tỉ lệ lần lượt với 9 và 6, chu vi là 300 cm. Chiều dài và chiều rộng của hình chữ nhật lần lượt là:
Một hình chữ nhật có hai cạnh tỉ lệ lần lượt với 9 và 6, chu vi là 300 cm. Chiều dài và chiều rộng của hình chữ nhật lần lượt là:
A. 40 cm và 60 cm;
A. 40 cm và 60 cm;
B. 90 cm và 60 cm;
B. 90 cm và 60 cm;
C. 40 cm và 90 cm;
C. 40 cm và 90 cm;
D. 60 cm và 40 cm.
D. 60 cm và 40 cm.
Trả lời:
Đáp án đúng là: B
Gọi x, y (m) lần lượt là chiều dài và chiều rộng của hình chữ nhật (0 < x, y < 150)
Nửa chu vi hình chữ nhật là:
x + y = 300 : 2 = 150 (m).
Hai cạnh của hình chữ nhật tỉ lệ với 9 và 6. Tức là chiều dài và chiều rộng của hình chữ nhật tỉ lệ với 9 và 6 nên ta có: \(\frac{x}{9} = \frac{y}{6}\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9} = \frac{y}{6} = \frac{{x + y}}{{9 + 6}} = \frac{{150}}{{15}} = 10\)
Suy ra x = 9 . 10 = 90; y = 6 . 10 = 60 (thỏa mãn điều kiện)
Vậy hình chữ nhật có chiều dài là 90 m, chiều rộng là 60 m.
Chọn đáp án B.
Đáp án đúng là: B
Gọi x, y (m) lần lượt là chiều dài và chiều rộng của hình chữ nhật (0 < x, y < 150)
Nửa chu vi hình chữ nhật là:
x + y = 300 : 2 = 150 (m).
Hai cạnh của hình chữ nhật tỉ lệ với 9 và 6. Tức là chiều dài và chiều rộng của hình chữ nhật tỉ lệ với 9 và 6 nên ta có: \(\frac{x}{9} = \frac{y}{6}\).
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{9} = \frac{y}{6} = \frac{{x + y}}{{9 + 6}} = \frac{{150}}{{15}} = 10\)
Suy ra x = 9 . 10 = 90; y = 6 . 10 = 60 (thỏa mãn điều kiện)
Vậy hình chữ nhật có chiều dài là 90 m, chiều rộng là 60 m.
Chọn đáp án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho tỉ lệ thức \(\frac{x}{2} = \frac{y}{3};\frac{y}{4} = \frac{z}{5}\) và 2z – 3x = 18. Giá trị của z là:
Cho tỉ lệ thức \(\frac{x}{2} = \frac{y}{3};\frac{y}{4} = \frac{z}{5}\) và 2z – 3x = 18. Giá trị của z là:
Câu 2:
Một hình chữ nhật có chu vi 56 m, tỉ số của chiều dài và chiều rộng là 5 : 2. Diện tích của hình chữ nhật đó là:
Một hình chữ nhật có chu vi 56 m, tỉ số của chiều dài và chiều rộng là 5 : 2. Diện tích của hình chữ nhật đó là:
Câu 3:
Cho tỉ lệ thức 2x = 3y = 4z và x – y + z = −10. Giá trị của x, y, z lần lượt là:
Cho tỉ lệ thức 2x = 3y = 4z và x – y + z = −10. Giá trị của x, y, z lần lượt là:
Câu 5:
Có 15 công nhân với năng suất như nhau đóng xong một chiếc tàu trong 40 ngày. Hỏi cần bao nhiêu công nhân để đóng xong một con tàu trong 30 ngày?
Có 15 công nhân với năng suất như nhau đóng xong một chiếc tàu trong 40 ngày. Hỏi cần bao nhiêu công nhân để đóng xong một con tàu trong 30 ngày?
Câu 6:
Giả sử x và y là hai đại lượng tỉ lệ thuận x1, x2 là hai giá trị khác nhau của x có giá trị lần lượt là 3 và −5 và y1; y2 là hai gía trị của y sao cho 2y1 + y2 = 2. Biểu diễn x theo y.
Giả sử x và y là hai đại lượng tỉ lệ thuận x1, x2 là hai giá trị khác nhau của x có giá trị lần lượt là 3 và −5 và y1; y2 là hai gía trị của y sao cho 2y1 + y2 = 2. Biểu diễn x theo y.
Câu 7:
Cho biết x và y là hai đại lượng tỉ lệ thuận. Gọi x1; x2 là hai giá trị của x và y1; y2 là hai giá trị tương ứng của y. Biết rằng x1 = 8; x2 = −10 và y1 = 4. Giá trị của y2 là:
Câu 8:
Bạn Lan đi từ trường đến nhà với vận tốc 12 km/h hết 30 phút. Nếu Lan đi với vận tốc 10 km/h thì hết bao nhiêu thời gian?
Bạn Lan đi từ trường đến nhà với vận tốc 12 km/h hết 30 phút. Nếu Lan đi với vận tốc 10 km/h thì hết bao nhiêu thời gian?
Câu 10:
Cho đại lượng y tỉ lệ thuận với đại lượng x theo hệ số k (k ≠ 0). Gọi x1; x2 là các giá trị của đại lượng x và y1; y2 là các giá trị của đại lượng y tương ứng, biết \({x_1}\) = 2,5 thì y1 = −0,5. Hãy tính \({x_2}\) khi y2 = 5.
Cho đại lượng y tỉ lệ thuận với đại lượng x theo hệ số k (k ≠ 0). Gọi x1; x2 là các giá trị của đại lượng x và y1; y2 là các giá trị của đại lượng y tương ứng, biết \({x_1}\) = 2,5 thì y1 = −0,5. Hãy tính \({x_2}\) khi y2 = 5.
Câu 11:
Một công nhân làm được 20 sản phẩm trong 40 phút. Trong 60 phút người đó làm được bao nhiêu sản phẩm cùng loại?
Một công nhân làm được 20 sản phẩm trong 40 phút. Trong 60 phút người đó làm được bao nhiêu sản phẩm cùng loại?
Câu 12:
Dùng 15 máy thì tiêu thụ hết 90 lít xăng. Hỏi dùng 25 máy (cùng loại) thì tiêu thụ hết bao nhiêu lít xăng?
Dùng 15 máy thì tiêu thụ hết 90 lít xăng. Hỏi dùng 25 máy (cùng loại) thì tiêu thụ hết bao nhiêu lít xăng?
Câu 13:
Cho tỉ lệ thức \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\) và x + y – z = 4. Giá trị của x, y, z lần lượt là:
Cho tỉ lệ thức \(\frac{x}{3} = \frac{y}{4} = \frac{z}{5}\) và x + y – z = 4. Giá trị của x, y, z lần lượt là:
Câu 14:
Chọn câu sai. Nếu \(\frac{a}{b} = \frac{c}{d} = \frac{m}{n}\) thì:
Chọn câu sai. Nếu \(\frac{a}{b} = \frac{c}{d} = \frac{m}{n}\) thì:
Câu 15:
Hai lớp 7A và 7B trồng cây. Biết rằng số cây trồng được của lớp 7A bằng \(\frac{4}{5}\) số cây trồng được của lớp 7B và lớp 7B trồng nhiều hơn lớp 7A là 20 cây. Tính số cây mỗi lớp đã trồng?
Hai lớp 7A và 7B trồng cây. Biết rằng số cây trồng được của lớp 7A bằng \(\frac{4}{5}\) số cây trồng được của lớp 7B và lớp 7B trồng nhiều hơn lớp 7A là 20 cây. Tính số cây mỗi lớp đã trồng?