Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau
Bài 2 trang 118 Toán lớp 10 Tập 1: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:
a)
b)
Bài 2 trang 118 Toán lớp 10 Tập 1: Hãy tìm số trung bình, tứ phân vị và mốt của các mẫu số liệu sau:
a)
b)
a) Số trung bình của mẫu số liệu là:
≈ 28,3.
Sắp xếp các giá trị theo thứ tự không giảm ta được mẫu:
23; 23; 23; 23; 23; 23; 25; 25; 25; 25; 25; 25; 25; 25; 28; 28; 28; 28; 28; 28; 28; 28; 28; 28; 31; 31; 31; 31; 31; 31; 33; 33; 33; 33; 37; 37; 37.
Cỡ mẫu bằng 37, là số lẻ nên tứ phân vị thứ hai là số liệu thứ 19 là Q2 = 28.
Tứ phân vị thứ nhất là trung vị của mẫu 23; 23; 23; 23; 23; 23; 25; 25; 25; 25; 25; 25; 25; 25; 28; 28; 28; 28 với cỡ mẫu 18 là số chẵn nên trung vị là trung bình cộng của số liệu thứ 9 và thứ 10 trong mẫu là Q1 = (25 + 25) = 25.
Tứ phân vị thứ ba là trung vị của mẫu 28; 28; 28; 28; 28; 31; 31; 31; 31; 31; 31; 33; 33; 33; 33; 37; 37; 37 với cỡ mẫu bằng 18 là số chẵn nên trung vị của mẫu là trung bình cộng của số liệu thứ 9 và thứ 10 là (31 + 31) = 31.
Do đó tứ phân vị thứ ba của mẫu số liệu là Q3 = 31.
Giá trị 28 xuất hiện nhiều nhất (10 lần) nên mốt của dấu hiệu trên là M0 = 28.
b) Số trung bình của mẫu số liệu là:
= 1,3.
Chọn cỡ mẫu bằng 10, khi đó tần số của 0 là 0,6 . 10 = 6; tần số của 1 là 0,2 . 10 = 2, tần số của 4 là 0,1 . 10 = 1, tần số của 5 là 0,1 . 10 = 1.
Sắp xếp các giá trị theo thứ tự không giảm ta được mẫu:
0; 0; 0; 0; 0; 0; 2; 2; 4; 5.
Cỡ mẫu bằng 10, là số chẵn nên tứ phân vị thứ hai bằng trung bình cộng của số liệu thứ 5 và số liệu thứ 6 trong mẫu là Q2 = (0 + 0) = 0.
Tứ phân vị thứ nhất là trung vị của mẫu 0; 0; 0; 0; 0 với cỡ mẫu bằng 5 là số liệu thứ 3 trong mẫu là Q1 = 0.
Tứ phân vị thứ ba là trung vị của mẫu 0; 2; 2; 4; 5 với cỡ mẫu bằng 5 là số liệu thứ 8 trong mẫu là Q3 = 2.
Giá trị 0 xuất hiện nhiều nhất nên mốt của dấu hiệu trên là M0 = 0.
Xem thêm lời giải bài tập SGK Toán lớp 10 Chân trời sáng tạo hay, chi tiết khác:
Bài 2: Mô tả và biểu diễn dữ liệu trên các bảng và biểu đồ
Bài 3: Các số đặc trưng đo xu thế trung tâm của mẫu số liệu