Câu hỏi:
01/04/2024 31
Hàm số \(y = 2\sqrt {\sin x} - 2\sqrt {\cos x} \) có đạo hàm là:
Hàm số \(y = 2\sqrt {\sin x} - 2\sqrt {\cos x} \) có đạo hàm là:
A. \(y' = \frac{1}{{\sqrt {\sin x} }} - \frac{1}{{\sqrt {\cos x} }}\).
B. \(y' = \frac{1}{{\sqrt {\sin x} }} + \frac{1}{{\sqrt {\cos x} }}\).
C. \(y' = \frac{{\cos x}}{{\sqrt {\sin x} }} - \frac{{\sin x}}{{\sqrt {\cos x} }}\).
D. \(y' = \frac{{\cos x}}{{\sqrt {\sin x} }} + \frac{{\sin x}}{{\sqrt {\cos x} }}\).
Trả lời:
Hướng dẫn giải:
Chọn D.
\[y' = 2\left( {\sqrt {\sin x} } \right)' - 2\left( {\sqrt {\cos x} } \right)' = 2.\cos x.\frac{1}{{2\sqrt {\sin x} }} + 2\sin x\frac{1}{{2\sqrt {\cos x} }}\].
\[ = \frac{{\cos x}}{{\sqrt {\sin x} }} + \frac{{\sin x}}{{\sqrt {\cos x} }}\]
Hướng dẫn giải:
Chọn D.
\[y' = 2\left( {\sqrt {\sin x} } \right)' - 2\left( {\sqrt {\cos x} } \right)' = 2.\cos x.\frac{1}{{2\sqrt {\sin x} }} + 2\sin x\frac{1}{{2\sqrt {\cos x} }}\].
\[ = \frac{{\cos x}}{{\sqrt {\sin x} }} + \frac{{\sin x}}{{\sqrt {\cos x} }}\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Câu 4:
Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Câu 5:
Cho hàm số \(y = \sin \left( {\frac{\pi }{3} - \frac{x}{2}} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Cho hàm số \(y = \sin \left( {\frac{\pi }{3} - \frac{x}{2}} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Câu 6:
Đạo hàm của hàm số \(y = - \frac{2}{{\tan \left( {1 - 2x} \right)}}\) bằng:
Câu 7:
Tính đạo hàm của hàm số sau \(y = {\cos ^2}\left( {{{\sin }^3}x} \right)\)
Tính đạo hàm của hàm số sau \(y = {\cos ^2}\left( {{{\sin }^3}x} \right)\)
Câu 8:
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
Câu 10:
Tính đạo hàm của hàm số sau \(y = \frac{{\sin 2x}}{x} - \frac{x}{{\cos 3x}}\)
Tính đạo hàm của hàm số sau \(y = \frac{{\sin 2x}}{x} - \frac{x}{{\cos 3x}}\)
Câu 13:
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Câu 15:
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)