Câu hỏi:
01/04/2024 41
Hàm số \[y = \frac{1}{2}{\left( {1 + \tan x} \right)^2}\]có đạo hàm là:
Hàm số \[y = \frac{1}{2}{\left( {1 + \tan x} \right)^2}\]có đạo hàm là:
A. \[y' = 1 + \tan x\].
B. \[y' = {\left( {1 + \tan x} \right)^2}\].
C. \[y' = \left( {1 + \tan x} \right)\left( {1 + {{\tan }^2}x} \right)\].
D. \[y' = 1 + {\tan ^2}x\].
Trả lời:
Hướng dẫn giải:
Chọn C.
Sử dụng công thức đạo hàm hợp: \[\left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\] và đạo hàm của hàm số lượng giác.
Ta có: \[y' = \frac{1}{2}.2\left( {1 + \tan x} \right).{\left( {1 + \tan x} \right)^'}\]\[ = \left( {1 + \tan x} \right)\frac{1}{{{{\cos }^2}x}}\]\[ = \left( {1 + \tan x} \right)\left( {1 + {{\tan }^2}x} \right)\].
Hướng dẫn giải:
Chọn C.
Sử dụng công thức đạo hàm hợp: \[\left( {{u^n}} \right)' = n.{u^{n - 1}}.u'\] và đạo hàm của hàm số lượng giác.
Ta có: \[y' = \frac{1}{2}.2\left( {1 + \tan x} \right).{\left( {1 + \tan x} \right)^'}\]\[ = \left( {1 + \tan x} \right)\frac{1}{{{{\cos }^2}x}}\]\[ = \left( {1 + \tan x} \right)\left( {1 + {{\tan }^2}x} \right)\].CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 3:
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Tính đạo hàm của hàm số sau \(y = \sqrt {3{{\tan }^2}x + \cot 2x} \)
Câu 4:
Cho hàm số \(y = \sin \left( {\frac{\pi }{3} - \frac{x}{2}} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Cho hàm số \(y = \sin \left( {\frac{\pi }{3} - \frac{x}{2}} \right)\). Khi đó phương trình \(y' = 0\) có nghiệm là:
Câu 5:
Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Tính đạo hàm của hàm số sau \(y = x\tan 2x + \frac{{x + 1}}{{\cot x}}\)
Câu 6:
Đạo hàm của hàm số \(y = - \frac{2}{{\tan \left( {1 - 2x} \right)}}\) bằng:
Câu 7:
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
Đạo hàm của hàm số \[y = {\sin ^2}\left( {\frac{\pi }{2} - 2x} \right) + \frac{\pi }{2}x - \frac{\pi }{4}\] là
Câu 8:
Tính đạo hàm của hàm số sau \(y = \frac{{\sin 2x}}{x} - \frac{x}{{\cos 3x}}\)
Tính đạo hàm của hàm số sau \(y = \frac{{\sin 2x}}{x} - \frac{x}{{\cos 3x}}\)
Câu 9:
Tính đạo hàm của hàm số sau \(y = {\cos ^2}\left( {{{\sin }^3}x} \right)\)
Tính đạo hàm của hàm số sau \(y = {\cos ^2}\left( {{{\sin }^3}x} \right)\)
Câu 14:
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Đạo hàm của hàm số \[y = \sin \left( {\frac{\pi }{2} - 2x} \right)\] là \(y'\) bằng
Câu 15:
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)
Tính đạo hàm của hàm số sau \(y = 2{\sin ^3}2x + {\tan ^2}3x + x\cos 4x\)