Câu hỏi:
03/04/2024 40
Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ sô phân biệt. Chọn ngẫu nhiên 1 số từ S. Xác suất chọn được số lớn hơn 2500 là:
A. \[P = \frac{{13}}{{68}}\]
B. \[P = \frac{{55}}{{68}}\]
C. \[P = \frac{{68}}{{81}}\]
D. \[P = \frac{{13}}{{81}}\]
Trả lời:
Đáp án C
Phương pháp:
- Tìm số phần tử của không gian mẫu \[n\left( \Omega \right)\]
- Tính số khả năng có lợi cho biến cố.
- Tính xác suất theo công thức \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\]
Cách giải:
Gọi số có số tự nhiên có bốn chữ số phân biệt là \[\overline {abcd} ,\,\,\left( {a,b,c,d \in \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}} \right)\]
+ a có 9 cách chọn, b có 9 cách chọn, c có 8 cách chọn, d có 7 cách chọn
Nên có \[9.9.8.7 = 4536\] số. Hay số phần tử của không gian mẫu là \[n\left( \Omega \right) = 4536\]
Gọi A là biến cố \[\overline {abcd} > 2500\]
+ Nếu \[a \in \left\{ {3;4;5;6;7;8;9} \right\}\] thì số cách chọn 3 chữ số b, c, d là \[A_9^3\] nên có \[7.A_9^3\] số
+ Nếu \[a = 2\] và \[b = 5\] thì \[c,d \in \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\] nên có \[A_8^2\] số
+ Nếu \[a = 2;\,\,b \in \left\{ {6;7;8;9} \right\}\] thì có \[A_8^2\] cách chọn c, d nên có \[4.A_8^2\] số
Số phần tử của biến cố A là \[n\left( A \right) = 7.A_9^3 + A_8^2 + 4.A_8^2 = 3808\]
Xác suất cần tìm là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{3808}}{{4536}} = \frac{{68}}{{81}}\]
Đáp án C
Phương pháp:
- Tìm số phần tử của không gian mẫu \[n\left( \Omega \right)\]
- Tính số khả năng có lợi cho biến cố.
- Tính xác suất theo công thức \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}}\]
Cách giải:
Gọi số có số tự nhiên có bốn chữ số phân biệt là \[\overline {abcd} ,\,\,\left( {a,b,c,d \in \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}} \right)\]
+ a có 9 cách chọn, b có 9 cách chọn, c có 8 cách chọn, d có 7 cách chọn
Nên có \[9.9.8.7 = 4536\] số. Hay số phần tử của không gian mẫu là \[n\left( \Omega \right) = 4536\]
Gọi A là biến cố \[\overline {abcd} > 2500\]
+ Nếu \[a \in \left\{ {3;4;5;6;7;8;9} \right\}\] thì số cách chọn 3 chữ số b, c, d là \[A_9^3\] nên có \[7.A_9^3\] số
+ Nếu \[a = 2\] và \[b = 5\] thì \[c,d \in \left\{ {0;1;2;3;4;5;6;7;8;9} \right\}\] nên có \[A_8^2\] số
+ Nếu \[a = 2;\,\,b \in \left\{ {6;7;8;9} \right\}\] thì có \[A_8^2\] cách chọn c, d nên có \[4.A_8^2\] số
Số phần tử của biến cố A là \[n\left( A \right) = 7.A_9^3 + A_8^2 + 4.A_8^2 = 3808\]
Xác suất cần tìm là \[P\left( A \right) = \frac{{n\left( A \right)}}{{n\left( \Omega \right)}} = \frac{{3808}}{{4536}} = \frac{{68}}{{81}}\]