Câu hỏi:

29/12/2023 79

Gieo một con xúc xắc hai lần, xác suất để biến cố tích hai số chấm xuất hiện khi gieo xúc xắc là một số chẵn là:

A. 0,25;

B. 0,5;

C. 0,75;

Đáp án chính xác

D. 0,85.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Không gian mẫu là:

Ω = {(i; j) | i, j = 1, 2, …, 6}

Trong đó, (i; j) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm”. Có: n(Ω) = 6 . 6 = 36

Gọi biến cố A: “Tích hai số chấm xuất hiện khi gieo là một số chẵn”.

TH1: Lần 1 gieo được số chẵn chấm là 2; 4 và 6 thì lần 2 gieo được số nào cũng được: \(C_3^1.C_6^1 = 18\)

TH2: Lần 1 gieo được số lẻ chấm là 1; 3 và 5 thì lần 2 phải gieo được số chẵn chấm: \(C_3^1.C_3^1 = 9\)

Do đó, n(A) = 18 + 9 = 27

Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{27}}{{36}} = 0,75\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Gieo ba con xúc xắc. Xác suất để số chấm xuất hiện trên ba con xúc xắc như nhau là:

Xem đáp án » 29/12/2023 110

Câu 2:

Gieo một con xúc xắc hai lần. Xác suất để số chấm xuất hiện sau hai lần gieo có tổng bằng 8 là:

Xem đáp án » 29/12/2023 83

Câu 3:

Gieo con xúc xắc ba lần. Tính xác suất để tích số chấm xuất hiện ở ba lần là một số tự nhiên chẵn ?

Xem đáp án » 29/12/2023 82

Câu 4:

Gieo con xúc xắc hai lần. Tính xác suất để tích số chấm xuất hiện ở hai lần là một số tự nhiên lẻ ?

Xem đáp án » 29/12/2023 78

Câu hỏi mới nhất

Xem thêm »
Xem thêm »