Câu hỏi:
29/12/2023 122Gieo ba con xúc xắc. Xác suất để số chấm xuất hiện trên ba con xúc xắc như nhau là:
A. \(\frac{{12}}{{216}}\);
B. \(\frac{1}{{216}}\);
C. \(\frac{6}{{216}}\);
D. \(\frac{3}{{216}}\).
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
Không gian mẫu là:
Ω = {(i; j; k) | i, j, k = 1, 2, …, 6}
Trong đó, (i; j; k) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm, lần cuối xuất hiện mặt k chấm”. Có: n(Ω) = 6 . 6 . 6 = 216.
Gọi biến cố A: “Số chấm xuất hiện trên 3 con xúc xắc như nhau”. Các kết quả thuận lợi cho A là: (1; 1; 1); (2; 2; 2); (3; 3; 3); (4; 4; 4); (5; 5; 5); (6; 6; 6).
Do đó, n(A) = 6.
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{216}}\).
Hướng dẫn giải
Đáp án đúng là: C
Không gian mẫu là:
Ω = {(i; j; k) | i, j, k = 1, 2, …, 6}
Trong đó, (i; j; k) là kết quả “Lần đầu xuất hiện mặt i chấm, lần sau xuất hiện mặt j chấm, lần cuối xuất hiện mặt k chấm”. Có: n(Ω) = 6 . 6 . 6 = 216.
Gọi biến cố A: “Số chấm xuất hiện trên 3 con xúc xắc như nhau”. Các kết quả thuận lợi cho A là: (1; 1; 1); (2; 2; 2); (3; 3; 3); (4; 4; 4); (5; 5; 5); (6; 6; 6).
Do đó, n(A) = 6.
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{6}{{216}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Trong thư viện có 12 quyển sách gồm 3 quyển Toán giống nhau, 3 quyển Lý giống nhau, 3 quyển Hóa giống nhau và 3 quyển Sinh giống nhau. Xác suất 3 quyển sách thuộc cùng 1 môn không được xếp liền nhau ?
Câu 2:
Cho một hình vuông cạnh bằng 2. Giả sử \(\sqrt 2 \) ≈ 1,41, tính độ dài đường chéo của hình vuông và ước lượng độ chính xác của kết quả tìm được. Biết 1,41 < \(\sqrt 2 \) < 1,42.
Câu 3:
Tốc độ phát triển của một loại virus trong 10 ngày với các điều kiện khác nhau (đơn vị: nghìn con) được thống kê lại như sau:
20 |
100 |
30 |
980 |
440 |
20 |
20 |
150 |
60 |
270 |
Trong trường hợp này, ta nên chọn số nào dưới đây làm giá trị đại diện là tốt nhất? Tính giá trị đại diện đó.
Câu 4:
Mẫu số liệu thống kê kết quả 5 bài kiểm tra của bạn Lan và Hoa lần lượt là:
Lan: 8; 9; 7; 10; 7
Hoa: 9; 6; 7; 9; 10
Bạn nào có kết quả kiểm tra đồng đều hơn ?