Giải phương trình: sin x = căn bậc hai 3 / 2
Giải phương trình: \(\sin x = \frac{{\sqrt 3 }}{2}\);
Giải phương trình: \(\sin x = \frac{{\sqrt 3 }}{2}\);
Do \(\sin \frac{\pi }{3} = \frac{{\sqrt 3 }}{2}\) nên \(\sin x = \sin \frac{\pi }{3}\)
\( \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \pi - \frac{\pi }{3} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{3} + k2\pi \\x = \frac{{2\pi }}{3} + k2\pi \end{array} \right.\,\,\left( {k \in \mathbb{Z}} \right)\).
Vậy phương trình \(\sin x = \frac{{\sqrt 3 }}{2}\) có các nghiệm là \(x = \frac{\pi }{3} + k2\pi \) và \(x = \frac{{2\pi }}{3} + k2\pi \) với k ∈ ℤ.