Giải phương trình được nêu trong bài toán mở đầu

Giải phương trình được nêu trong bài toán mở đầu.

Trả lời

• Ta có:

\(550 + 450\cos \frac{\pi }{{50}}t = 1\,\,\,000\)

\( \Leftrightarrow 450\cos \frac{\pi }{{50}}t = 450\)

\( \Leftrightarrow \cos \frac{\pi }{{50}}t = 1\)

\( \Leftrightarrow \frac{\pi }{{50}}t = k2\pi \,\,\,\left( {k \in \mathbb{Z},\,t \ge 0} \right)\)

\[ \Leftrightarrow t = k2\pi .\frac{{50}}{\pi } = 100k\,\,\left( {k \in \mathbb{Z},\,t \ge 0} \right)\].

Vậy phương trình này có các nghiệm là t = 100k với k ℤ, t ≥ 0.

• Ta có:

\(550 + 450\cos \frac{\pi }{{50}}t = 250\)

\( \Leftrightarrow 450\cos \frac{\pi }{{50}}t = - 300\)

\( \Leftrightarrow \cos \frac{\pi }{{50}}t = - \frac{2}{3}\)

\[ \Leftrightarrow \left[ \begin{array}{l}\frac{\pi }{{50}}t \approx \,2,3 + k2\pi \\\frac{\pi }{{50}}t \approx - \,2,3 + k2\pi \end{array} \right.\,\,\,\left( {k \in \mathbb{Z}\,,\,\,t \ge 0} \right)\]

(Dùng máy tính cầm tay (chuyển về chế độ “radian”) bấm liên tiếp  ta được kết quả gần đúng là 2,3)

\[ \Leftrightarrow \left[ \begin{array}{l}t \approx \frac{{115}}{\pi } + 100k\\t \approx - \frac{{115}}{\pi } + 100k\end{array} \right.\,\,\](với k ℤ, t ≥ 0)

Vậy phương trình có các nghiệm là \[t \approx \frac{{115}}{\pi } + 100k\]\[t \approx - \frac{{115}}{\pi } + 100k\] với k ℤ, t ≥ 0.

• Ta có:

\(550 + 450\cos \frac{\pi }{{50}}t = 1\,00\)

\( \Leftrightarrow 450\cos \frac{\pi }{{50}}t = - 450\)

\( \Leftrightarrow \cos \frac{\pi }{{50}}t = - 1\)

\( \Leftrightarrow \frac{\pi }{{50}}t = \pi + k2\pi \,\,\,\left( {k \in \mathbb{Z},\,t \ge 0} \right)\).

\( \Leftrightarrow t = 50 + 100k\,\,\,\left( {k \in \mathbb{Z},\,t \ge 0} \right)\).

Vậy phương trình có các nghiệm là t = 50 + 100k với k ℤ, t ≥ 0.

Câu hỏi cùng chủ đề

Xem tất cả