Câu hỏi:
03/04/2024 51Đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì:
A. a vuông góc với mặt phẳng (P)
B. a không vuông góc với mặt phẳng (P)
C. a không thể vuông góc với mặt phẳng (P)
D. a có thể vuông góc với mặt phẳng (P)
Trả lời:
Phương án A sai vì có thể có trường hợp a ⊥ b ⊂ (P); a⊥c ⊂ (P); b // c
Phương án B sai vì có thể xảy ra trường hợp a ⊥ b ⊂ (P); a⊥ c ⊂ (P); b ∩ c ≠ ∅, khi đó a⊥(P).
Đáp án D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lập phương ABCD. A’B’C’D’. Hình chiếu vuông góc của A lên mặt phẳng (A’BD) là:
Câu 2:
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Tan của góc giữa AC với mặt phẳng (ABD) bằng:
Câu 4:
Cho hình chóp S.ABCD, đáy là hình thoi tâm O và SA = SC, SB = SD
Đường thẳng AC vuông góc với mặt phẳng
Câu 6:
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Tan của góc giữa CM với mặt phẳng (BCD) bằng:
Câu 8:
Cho hình chóp S.ABCD có ABCD là hình vuông và SA ⊥ (ABCD) Tam giác SOD là:
Câu 9:
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Gọi M là trung điểm của AD và K là trung điểm của BD
Góc giữa CM với mặt phẳng (BCD) là:
Câu 13:
Cho tứ diện ABCD có AB = AC = AD; góc BAC bằng góc BAD bằng . Gọi M, N là trung điểm của AB và CD.
Đường thẳng CD vuông góc với mặt phẳng
Câu 14:
Cho hình chóp S.ABCD có ABCD là hình vuông và SA ⊥ (ABCD) Tam giác SBC là:
Câu 15:
Cho một điểm S có hình chiếu H trên mặt phẳng (P). Với điểm M bất kì trong (P) ta có: