Câu hỏi:
03/04/2024 55Cho hình chóp S.ABCD, đáy là hình thoi tâm O và SA = SC, SB = SD
Đường thẳng AC vuông góc với mặt phẳng
A. (SAC)
B. (SBD)
C. (ABCD)
D. (SDC)
Trả lời:
* Xét tam giác SAC có SA = SC nên tam giác cân tại S.
Lại có, SO là đường trung tuyến nên đồng thời là đường cao: (1)
* Vì đáy ABCD là hình thoi nên: (2)
Mà SO và BD là 2 đường thẳng cắt nhau, cùng thuộc mp (SBD) (3)
Từ (1); (2); (3) suy ra:
Đáp án B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hình lập phương ABCD. A’B’C’D’. Hình chiếu vuông góc của A lên mặt phẳng (A’BD) là:
Câu 2:
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Tan của góc giữa AC với mặt phẳng (ABD) bằng:
Câu 5:
Cho hình chóp S.ABCD có ABCD là hình vuông và SA ⊥ (ABCD) Tam giác SOD là:
Câu 6:
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Gọi M là trung điểm của AD và K là trung điểm của BD
Góc giữa CM với mặt phẳng (BCD) là:
Câu 7:
Cho tứ diện ABCD có BCD là tam giác đều cạnh bằng a, AB vuông góc với (BCD) và AB = 2a.
Tan của góc giữa CM với mặt phẳng (BCD) bằng:
Câu 11:
Đường thẳng a vuông góc với hai đường thẳng phân biệt trong mặt phẳng (P) thì:
Câu 13:
Cho tứ diện ABCD có AB = AC = AD; góc BAC bằng góc BAD bằng . Gọi M, N là trung điểm của AB và CD.
Đường thẳng CD vuông góc với mặt phẳng
Câu 14:
Cho hình chóp S.ABCD có ABCD là hình vuông và SA ⊥ (ABCD) Tam giác SBC là:
Câu 15:
Cho một điểm S có hình chiếu H trên mặt phẳng (P). Với điểm M bất kì trong (P) ta có: