Câu hỏi:
05/03/2024 31Có bao nhiêu số nguyên a < 5 biết: 10 là bội của (2a+5)
A. 4
B. 5
C. 8
D. 6
Trả lời:
Trả lời:
Vì 10 là bội của \[2a + 5\;\] nên \[2a + 5\] là ước của 10
\[U(10) = \{ \pm 1; \pm 2; \pm 5; \pm 10\} \]
Ta có bảng:
Mà \[a < 5\;\] nên \[a \in \left\{ { - 3; - 2;0; - 5} \right\}\]
Vậy có 4 giá trị nguyên của a thỏa mãn bài toán.
Đáp án cần chọn là: A
Trả lời:
Vì 10 là bội của \[2a + 5\;\] nên \[2a + 5\] là ước của 10
\[U(10) = \{ \pm 1; \pm 2; \pm 5; \pm 10\} \]
Ta có bảng:
Mà \[a < 5\;\] nên \[a \in \left\{ { - 3; - 2;0; - 5} \right\}\]
Vậy có 4 giá trị nguyên của a thỏa mãn bài toán.
Đáp án cần chọn là: A
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho a và b là hai số nguyên khác 0. Biết \(a \vdots b\) và \(b \vdots a\) . Khi đó
Câu 8:
Có bao nhiêu số nguyên n thỏa mãn \[(n - 1)\;\] là bội của \[(n + 5)\;\] và \[(n + 5)\;\] là bội của \[(n - 1)?\;\]
Câu 9:
Gọi A là tập hợp các giá trị \[n \in Z\] để \[({n^2} - 7)\;\] là bội của \[(n + 3)\] .Tổng các phần tử của A bằng:
Câu 10:
Tìm \(n \in {\rm Z}\) biết \[\left( {n + 5} \right) \vdots \left( {n + 1} \right)\]
Câu 11:
Cho \[x;y \in \mathbb{Z}\] . Nếu \[5x + 46y\;\] chia hết cho 16 thì \[x + 6y\;\] chia hết cho
Câu 13:
Cho \[Q = - 135.17 - 121.17 - 256.\left( { - 17} \right)\] chọn câu đúng.
Câu 14:
Tìm \[x \in Z\;\] biết \[(x + 1) + (x + 2) + ... + (x + 99) + (x + 100) = 0\]
Câu 15:
Giá trị biểu thức \[M = \left( { - 192873} \right).\left( { - 2345} \right).{\left( { - 4} \right)^5}.0\;\] là