Câu hỏi:
05/03/2024 44Cho \[x;y \in \mathbb{Z}\] . Nếu \[5x + 46y\;\] chia hết cho 16 thì \[x + 6y\;\] chia hết cho
A. 6
B. 46
C. 16
D. 5
Trả lời:
Trả lời:
Ta có
\[\begin{array}{l}5x + 46y = 5x + 30y + 16y\\ = (5x + 30y) + 16y\\ = 5(x + 6y) + 16y\end{array}\]
Vì \[5x + 46y\] chia hết cho 16 và 16y chia hết cho 16 nên suy ra \[5\left( {x + 6y} \right)\] chia hết cho 16.
Mà 5 không chia hết cho 16 nên suy ra \[x + 6y\] chia hết cho 16
Vậy nếu \[5x + 46y\] chia hết cho 16 thì \[x + 6y\] cũng chia hết cho 16.
Đáp án cần chọn là: C
Trả lời:
Ta có
\[\begin{array}{l}5x + 46y = 5x + 30y + 16y\\ = (5x + 30y) + 16y\\ = 5(x + 6y) + 16y\end{array}\]
Vì \[5x + 46y\] chia hết cho 16 và 16y chia hết cho 16 nên suy ra \[5\left( {x + 6y} \right)\] chia hết cho 16.
Mà 5 không chia hết cho 16 nên suy ra \[x + 6y\] chia hết cho 16
Vậy nếu \[5x + 46y\] chia hết cho 16 thì \[x + 6y\] cũng chia hết cho 16.
Đáp án cần chọn là: C
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Tính nhanh \[\left( { - 5} \right).125.\left( { - 8} \right).20.\left( { - 2} \right)\;\] ta được kết quả là
Câu 4:
Cho a và b là hai số nguyên khác 0. Biết \(a \vdots b\) và \(b \vdots a\) . Khi đó
Câu 10:
Có bao nhiêu số nguyên n thỏa mãn \[(n - 1)\;\] là bội của \[(n + 5)\;\] và \[(n + 5)\;\] là bội của \[(n - 1)?\;\]
Câu 11:
Tìm \(n \in {\rm Z}\) biết \[\left( {n + 5} \right) \vdots \left( {n + 1} \right)\]
Câu 12:
Gọi A là tập hợp các giá trị \[n \in Z\] để \[({n^2} - 7)\;\] là bội của \[(n + 3)\] .Tổng các phần tử của A bằng:
Câu 13:
Cho \[Q = - 135.17 - 121.17 - 256.\left( { - 17} \right)\] chọn câu đúng.
Câu 15:
Tìm \[x \in Z\;\] biết \[(x + 1) + (x + 2) + ... + (x + 99) + (x + 100) = 0\]