Chứng minh rằng tích của hai số tự nhiên lẻ liên tiếp cộng thêm 1 thì luôn chia hết cho 4. Gợi ý: Mỗi số tự nhiên lẻ luôn viết được dưới
203
20/12/2023
Bài 7.24 trang 30 SBT Toán 7 Tập 2: Chứng minh rằng tích của hai số tự nhiên lẻ liên tiếp cộng thêm 1 thì luôn chia hết cho 4.
Gợi ý: Mỗi số tự nhiên lẻ luôn viết được dưới dạng 2n – 1 với n ℕ*, hoặc dưới dạng 2n + 1 với n ℕ.
Trả lời
Hai số tự nhiên lẻ liên tiếp hơn kém nhau 2 đơn vị nên nếu số thứ nhất là:
a = 2n − 1 (n ℕ*)
Thì số thứ hai là b = a + 2 = 2n + 1
Khi đó:
ab + 1 = (2n − 1)(2n + 1) + 1 = (4n2 + 2n − 2n − 1) + 1 = 4n2
Rõ ràng 4n2 chia hết cho 4 nên ta có điều phải chứng minh.
Chú ý. Nếu viết hai số lẻ liên tiếp là a = 2n + 1 và b = a + 2 = 2n + 3 (n ℕ) thì:
ab + 1 = (2n + 1)(2n + 3) + 1 = 4(n2 + 2n + 1) ⋮ 4