Cho tứ giác ABCD có các cạnh đối song song. Gọi O là giao điểm của hai đường chéo. Hãy chứng tỏ: ‒ Tam giác ABC bằng tam giác CDA.

Cho tứ giác ABCD có các cạnh đối song song. Gọi O là giao điểm của hai đường chéo. Hãy chứng tỏ:

‒ Tam giác ABC bằng tam giác CDA.

‒ Tam giác OAB bằng tam giác OCD.

Cho tứ giác ABCD có các cạnh đối song song. Gọi O là giao điểm của hai đường chéo. Hãy chứng tỏ:  ‒ Tam giác ABC bằng tam giác CDA. (ảnh 1)

Trả lời
Cho tứ giác ABCD có các cạnh đối song song. Gọi O là giao điểm của hai đường chéo. Hãy chứng tỏ:  ‒ Tam giác ABC bằng tam giác CDA. (ảnh 2)

• Tứ giác ABCD có AB // DC và AD // BC.

Từ AB // DC suy ra A^1=C^1 (so le trong) và B^1=D^1 (so le trong).

Từ AD // BC suy ra A^2=C^2 (so le trong).

Xét DABC và DCDA có:

A^1=C^1; AC là cạnh chung; A^2=C^2

Do đó DABC = DCDA (g.c.g).

• Do DABC = DCDA nên AB = CD (hai cạnh tương ứng).

Xét DOAB và DOCD có:

A^1=C^1; AB = CD; B^1=D^1 (chứng minh trên)

Do đó DOAB = DOCD (g.c.g).

Câu hỏi cùng chủ đề

Xem tất cả