Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E, tia phân giác của góc B cắt CD tại F. a) Chứng minh DE // BF.

Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E, tia phân giác của góc B cắt CD tại F.

a) Chứng minh DE // BF.

Trả lời

a)

Cho hình bình hành ABCD (AB > BC). Tia phân giác của góc D cắt AB tại E, tia phân giác của góc B cắt CD tại F.  a) Chứng minh DE // BF.  (ảnh 1)

Do ABCD là hình bình hành nên AB // CD và B^=D^.

Vì DE là tia phân giác của góc D nên D^1=D^2=12D^.

Vì BF là tia phân giác của góc B nên B^1=B^2=12B^.

Do đó B^1=D^2.

Do AB // CD nên B^1=F^1 (so le trong).

Suy ra D^2=F^1

Mà hai góc này ở vị trí so le trong nên DE // BF.

Câu hỏi cùng chủ đề

Xem tất cả