Câu hỏi:

25/01/2024 122

Cho ∆ABC vuông tại A có AB < AC. Kẻ AH vuông góc với BC (H BC). Gọi D là điểm trên cạnh AC sao cho AD = AB. Vẽ DE vuông góc với BC (E BC) và DK vuông góc với AH (K AH). Độ dài của HE bằng:


A. HA;                  



B. KD;                  


C. Cả A và B đều đúng;            

Đáp án chính xác

D. Cả A và B đều sai.

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Cho tam giác ABC vuông tại A có AB < AC. Kẻ AH vuông góc với BC (H thuộc BC). (ảnh 1)

Xét ∆HAB và ∆KDA, có:

AB = AD (giả thiết)

AHB^=AKD^=90°.

BAH^=ADK^ (cùng phụ với KAD^).

Do đó ∆HAB = ∆KDA (cạnh huyền – góc nhọn)

Suy ra HA = KD (cặp cạnh tương ứng)

Vì vậy phương án B, D đúng.

Ta có KD AH (giả thiết) và EH AH (giả thiết)

Suy ra KD // EH.

Suy ra KDH^=EHD^ (cặp góc so le trong).

Xét ∆KDH và ∆EHD, có:

DKH^=HED^=90°.

DH là cạnh chung.

KDH^=EHD^ (chứng minh trên)

Do đó ∆KDH = ∆EHD (cạnh huyền – góc nhọn)

Suy ra KD = HE (cặp cạnh tương ứng)

Mà HA = KD (chứng minh trên)

Do đó HA = HE.

Vì vậy phương án C đúng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho ∆ABC có AB = AC (A^<90°). Vẽ BH AC (H AC), CK AB (K AB). Gọi I là giao điểm của BH và CK. Gọi D là giao điểm của AI và BC. Ta có các phát biểu sau:

(I) AI là tia phân giác của BAC^;

(II) AD BC;

(III) D là trung điểm của BC.

Phát biểu đúng là:

Xem đáp án » 25/01/2024 68

Câu 2:

Cho đoạn thẳng AB, điểm O nằm giữa A và B. Kẻ tia Ox vuông góc với AB. Trên tia Ox lấy các điểm C và D sao cho OC = OA, OD = OB. Gọi M, N lần lượt là trung điểm của AD và BC. Góc MON là:

Xem đáp án » 25/01/2024 55

Câu hỏi mới nhất

Xem thêm »
Xem thêm »