Cho tam giác ABC với AB = 6 cm, AC = 9 cm. a) Lấy điểm M, N lần lượt trên các cạnh AB, AC sao cho AM = 4 cm, AN = 6 cm. Chứng minh rằng ∆AMN ᔕ ∆ABC và tìm tỉ số đồng dạng. b) Lấy điểm P trê
9
29/10/2024
Cho tam giác ABC với AB = 6 cm, AC = 9 cm.
a) Lấy điểm M, N lần lượt trên các cạnh AB, AC sao cho AM = 4 cm, AN = 6 cm. Chứng minh rằng ∆AMN ᔕ ∆ABC và tìm tỉ số đồng dạng.
b) Lấy điểm P trên cạnh AC sao cho AP = 4 cm. Chứng minh rằng ∆APB ᔕ ∆ABC.
Trả lời
Lời giải
a)
Xét tam giác ABC có:
\(\frac{{AM}}{{AB}} = \frac{{AN}}{{AC}}\,\,\,\,\,\,\left( {do\,\,\frac{4}{6} = \frac{6}{9} = \frac{2}{3}} \right)\)
Suy ra MN song song với BC (định lí Thalès đảo)
Do ∆AMN ᔕ ∆ABC với tỉ số đồng dạng \(\frac{2}{3}\) (1).
b)
Tam giác APB và tam giác AMN có:
AP = AM (= 4 cm)
\(\widehat A\) chung
AB = AN (= 6 cm)
Do đó, ∆APB = ∆AMN (c.g.c). Suy ra ∆APB ᔕ ∆AMN (2).
Từ (1) và (2) ta có: ∆APB ᔕ ∆ABC.