Câu hỏi:

18/12/2023 166

Cho tam giác ABC có trọng tâm G. Với điểm M bất kì, đẳng thức nào sau đây đúng?


A. MA2 + MB2 + MC2 = 3MG2 + GA2 + GB2 + GC2;


Đáp án chính xác


B. MA2 + MB2 + MC2 = 3MG2;



C. MA2 + MB2 + MC2 = 3MG2 + (GA + GB + GC)2;



D. MA2 + MB2 + MC2 = 0.


Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là A

\(M{A^2} + {\rm{ }}M{B^2} + {\rm{ }}M{C^2} = {\overrightarrow {MA} ^2} + {\overrightarrow {MB} ^2} + {\overrightarrow {MC} ^2}\)

\( = {\left( {\overrightarrow {MG} + \overrightarrow {GA} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GB} } \right)^2} + {\left( {\overrightarrow {MG} + \overrightarrow {GC} } \right)^2}\)

\( = {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GA} + {\overrightarrow {GA} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GB} + {\overrightarrow {GB} ^2} + {\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\overrightarrow {GC} + {\overrightarrow {GC} ^2}\)

\( = 3{\overrightarrow {MG} ^2} + 2\overrightarrow {MG} .\left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}\)

Ta có: \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \) (tính chất trọng tâm tam giác)

\( \Rightarrow \overrightarrow {MG} .\left( {\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} } \right) = \overrightarrow {MG} .\overrightarrow 0 = 0\)

\( \Rightarrow M{A^2} + {\rm{ }}M{B^2} + {\rm{ }}M{C^2} = 3{\overrightarrow {MG} ^2} + {\overrightarrow {GA} ^2} + {\overrightarrow {GB} ^2} + {\overrightarrow {GC} ^2}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho đoạn thẳng AB và điểm I là trung điểm của đoạn thẳng AB. Với điểm M bất kì, khẳng định nào dưới đây là đúng?

Xem đáp án » 18/12/2023 175

Câu 2:

Trong mặt phẳng tọa độ Oxy, cho ba điểm không thẳng hàng A(-3;1), B(2;4), C(2;-2). Gọi H(x; y) là trực tâm của tam giác ABC. Tính S = 5x + y.

Xem đáp án » 18/12/2023 172

Câu 3:

Trong mặt phẳng tọa độ Oxy, hãy tính góc giữa hai vecto \(\overrightarrow a \)\(\overrightarrow b \) trong trường hợp \(\overrightarrow a \left( {3;1} \right),\overrightarrow b \left( {2;4} \right)\).

Xem đáp án » 18/12/2023 166

Câu 4:

Trong mặt phẳng tọa độ Oxy, cho hai điểm A(1; -3), B(5; 2). Tìm điểm M thuộc tia Oy để góc \(\widehat {AMB} = {90^0}.\)

Xem đáp án » 18/12/2023 158

Câu 5:

Cho tam giác ABC có BC = a, CA = b, AB = c. Hãy tính \(\overrightarrow {AB} .\overrightarrow {AC} \) theo a, b, c.

Xem đáp án » 18/12/2023 155

Câu 6:

Tính tích vô hướng của hai vectơ \(\overrightarrow u \left( {1; - 3} \right),\overrightarrow v \left( {\sqrt 7 ;\,\, - 2} \right)\) là k. Nhận xét nào sau đây đúng về giá trị của k.

Xem đáp án » 18/12/2023 138

Câu 7:

Trong mặt phẳng tọa độ, cặp vectơ nào sau đây vuông góc với nhau?

Xem đáp án » 18/12/2023 134

Câu 8:

Góc giữa vectơ \(\overrightarrow a \left( { - 1; - 1} \right)\) và vecto \(\overrightarrow b \left( { - 1;0} \right)\) có số đo bằng:

Xem đáp án » 18/12/2023 122

Câu 9:

Khi nào thì hai vectơ \(\overrightarrow a \)\(\overrightarrow b \) vuông góc?

Xem đáp án » 18/12/2023 117

Câu 10:

Trong mặt phẳng tọa độ Oxy, cho điểm A(-1; 3), B(0; 4) và C(2x – 1; 3x2). Tổng các giá trị của x thỏa mãn \(\overrightarrow {AB} .\overrightarrow {AC} = 2\)

Xem đáp án » 18/12/2023 116

Câu 11:

Cho hình vuông ABCD có độ dài cạnh là a và A(0; 0), B(a; 0), C(a; a), D(0; a). Khẳng định nào sau đây là đúng?

Xem đáp án » 18/12/2023 102

Câu 12:

Cho tam giác ABC với A(-1;2), B(8;-1), C(8;8). Tính bán kính đường tròn ngoại tiếp tam giác ABC.

Xem đáp án » 18/12/2023 102

Câu 13:

Khi nào tích vô hướng của hai vecto \(\overrightarrow u ,\overrightarrow v \) là một số dương.

Xem đáp án » 18/12/2023 95

Câu 14:

Tìm điều kiện của \(\overrightarrow u ,\overrightarrow v \) để \(\overrightarrow u .\overrightarrow v = - \left| {\overrightarrow u } \right|.\left| {\overrightarrow v } \right|.\)

Xem đáp án » 18/12/2023 87

Câu 15:

Khi nào thì \({\left( {\overrightarrow u .\overrightarrow v } \right)^2} = {\overrightarrow u ^2}.{\overrightarrow v ^2}?\)

Xem đáp án » 18/12/2023 81

Câu hỏi mới nhất

Xem thêm »
Xem thêm »