Cho tam giác ABC có AB = 13, BC = 14, CA = 15. Cho D, E là hai điểm phân biệt

Bài 55 trang 82 SBT Toán 8 Tập 2Cho tam giác ABC có AB = 13, BC = 14, CA = 15. Cho D, E là hai điểm phân biệt.

a) Giả sử tam giác A’B’C’ là hình đồng dạng phối cảnh của tam giác ABC với điểm D là tâm đồng dạng phối cảnh, tỉ số A'B'AB=45. Tìm độ dài các cạnh của tam giác A’B’C’.

b) Giả sử tam giác A’’B’’C’’ là hình đồng dạng phối cảnh của tam giác ABC với điểm E là tâm đồng đạng phối cảnh, tỉ số A''B''AB=45. Tìm độ đài các cạnh của tam giác A’’B’’C’’.

c) Chứng minh diện tích tam giác A’B’C’ bằng diện tích tam giác A’’B’’C’’.

Trả lời

a) Do tam giác A’B’C’ là hình đồng dạng phối cảnh của tam giác ABC tỉ số A'B'AB=45 nên A'B'AB=A'C'AC=B'C'BC=45

Mà AB = 13, BC = 14, CA = 15 nên:

A'B'=4135=10,4B'C'=4145=11,2C'A'=4155=12.

Vậy A’B’ = 10,4; B’C’ = 11,2; C’A’ = 12.

b) Do tam giác A’’B’’C’’ là hình đồng dạng phối cảnh của tam giác ABC tỉ số A''B''AB=45 nên A''B''AB=A''C''AC=B''C''BC=45

Mà AB = 13, BC = 14, CA = 15 nên:

A''B''=4135=10,4B''C''=4145=11,2C''A''=4155=12.

Vậy A’’B’’ = 10,4; B’’C’’ = 11,2; C’’A’’ = 12.

c) Xét ∆A’B’C’ và ∆A’’B’’C’’ có:

A’B’ = A’’B’’ = 10;

B’C’ = B’’C’’ = 11,2;

A’C’ = A’’C’’ = 12;

Do đó ∆A’B’C’ = ∆A’’B’’C’’ (c.c.c).

Suy ra diện tích tam giác A’B’C’ bằng diện tích tam giác A’’B’’C’’.

Xem thêm các bài giải SBT Toán 8 Cánh diều hay, chi tiết khác:

Bài 6: Trường hợp đồng dạng thứ nhất của tam giác

Bài 7: Trường hợp đồng dạng thứ hai của tam giác

Bài 8: Trường hợp đồng dạng thứ ba của tam giác

Bài 9: Hình đồng dạng

Bài 10: Hình đồng dạng trong thực tiễn

Bài tập cuối chương 8

Câu hỏi cùng chủ đề

Xem tất cả