Câu hỏi:
19/01/2024 82
Cho phương trình (C): x2 + y2 – 2(m + 1)x + 4y – 1 = 0. Với giá trị nào của m thì đường tròn (C) có bán kính nhỏ nhất?
Cho phương trình (C): x2 + y2 – 2(m + 1)x + 4y – 1 = 0. Với giá trị nào của m thì đường tròn (C) có bán kính nhỏ nhất?
A. m = 2;
A. m = 2;
B. m = –1;
B. m = –1;
C. m = 1;
C. m = 1;
D. m = –2.
D. m = –2.
Trả lời:
Đáp án đúng là: B
Phương trình đường tròn (C) có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = m + 1, b = –2, c = –1.
Ta có R2 = a2 + b2 – c = (m + 1)2 + 4 + 1 = (m + 1)2 + 5.
Đường tròn (C) có bán kính nhỏ nhất khi và chỉ khi biểu thức (m + 1)2 + 5 đạt giá trị nhỏ nhất.
Ta có: (m + 1)2 ≥ 0, ∀m ∈ ℝ.
⇔ (m + 1)2 + 5 ≥ 5, ∀m ∈ ℝ.
Vậy giá trị nhỏ nhất của biểu thức (m + 1)2 + 5 là 5.
Dấu “=” xảy ra ⇔ m = –1.
Vậy m = –1 thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án B.
Đáp án đúng là: B
Phương trình đường tròn (C) có dạng: x2 + y2 – 2ax – 2by + c = 0, với a = m + 1, b = –2, c = –1.
Ta có R2 = a2 + b2 – c = (m + 1)2 + 4 + 1 = (m + 1)2 + 5.
Đường tròn (C) có bán kính nhỏ nhất khi và chỉ khi biểu thức (m + 1)2 + 5 đạt giá trị nhỏ nhất.
Ta có: (m + 1)2 ≥ 0, ∀m ∈ ℝ.
⇔ (m + 1)2 + 5 ≥ 5, ∀m ∈ ℝ.
Vậy giá trị nhỏ nhất của biểu thức (m + 1)2 + 5 là 5.
Dấu “=” xảy ra ⇔ m = –1.
Vậy m = –1 thỏa mãn yêu cầu bài toán.
Do đó ta chọn phương án B.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Đường tròn (C) có tâm I(2; –3) và tiếp xúc với trục Oy có phương trình là:
Đường tròn (C) có tâm I(2; –3) và tiếp xúc với trục Oy có phương trình là:
Câu 2:
Đường tròn (C) có tâm I thuộc đường thẳng d: x + 3y + 8 = 0, đi qua điểm A(–2; 1) và tiếp xúc với đường thẳng ∆: 3x – 4y + 10 = 0. Phương trình đường tròn (C) là:
Đường tròn (C) có tâm I thuộc đường thẳng d: x + 3y + 8 = 0, đi qua điểm A(–2; 1) và tiếp xúc với đường thẳng ∆: 3x – 4y + 10 = 0. Phương trình đường tròn (C) là:
Câu 3:
Đường tròn (C) có tâm I(1; –5) và đi qua O(0; 0) có phương trình là:
Đường tròn (C) có tâm I(1; –5) và đi qua O(0; 0) có phương trình là:
Câu 4:
Đường tròn (C) đi qua hai điểm A(–1; 2), B(–2; 3) và có tâm I thuộc đường thẳng ∆: 3x – y + 10 = 0. Phương trình đường tròn (C) là:
Đường tròn (C) đi qua hai điểm A(–1; 2), B(–2; 3) và có tâm I thuộc đường thẳng ∆: 3x – y + 10 = 0. Phương trình đường tròn (C) là:
Câu 5:
Cho đường tròn (C): x2 + y2 + 5x + 7y – 3 = 0. Khoảng cách từ tâm của (C) đến trục hoành bằng:
Cho đường tròn (C): x2 + y2 + 5x + 7y – 3 = 0. Khoảng cách từ tâm của (C) đến trục hoành bằng:
Câu 6:
Tọa độ tâm I và bán kính R của đường tròn (C): 16x2 + 16y2 + 16x – 8y – 11 = 0 là:
Tọa độ tâm I và bán kính R của đường tròn (C): 16x2 + 16y2 + 16x – 8y – 11 = 0 là:
Câu 7:
Cho đường tròn (C): x2 + y2 – 2x – 4y + 1 = 0. Gọi d1, d2 lần lượt là tiếp tuyến của đường tròn (C) tại điểm M(3; 2), N(1; 0). Tọa độ giao điểm của d1 và d2 là:
Cho đường tròn (C): x2 + y2 – 2x – 4y + 1 = 0. Gọi d1, d2 lần lượt là tiếp tuyến của đường tròn (C) tại điểm M(3; 2), N(1; 0). Tọa độ giao điểm của d1 và d2 là:
Câu 8:
Tọa độ tâm I của đường tròn đi qua ba điểm A(0; 4), B(2; 4), C(4; 0) là:
Tọa độ tâm I của đường tròn đi qua ba điểm A(0; 4), B(2; 4), C(4; 0) là:
Câu 9:
Cho phương trình x2 + y2 – 2mx – 4(m – 2)y + 6 – m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:
Cho phương trình x2 + y2 – 2mx – 4(m – 2)y + 6 – m = 0. Điều kiện của m để phương trình đã cho là một phương trình đường tròn là:
Câu 11:
Cho đường tròn (C): (x – 2)2 + (y + 4)2 = 25, biết tiếp tuyến vuông góc với đường thẳng d: 3x – 4y + 5 = 0. Phương trình tiếp tuyến của (C) là:
Cho đường tròn (C): (x – 2)2 + (y + 4)2 = 25, biết tiếp tuyến vuông góc với đường thẳng d: 3x – 4y + 5 = 0. Phương trình tiếp tuyến của (C) là:
Câu 12:
Đường tròn (C): x2 + y2 – 6x + 2y + 6 = 0 có tâm I và bán kính R là:
Đường tròn (C): x2 + y2 – 6x + 2y + 6 = 0 có tâm I và bán kính R là:
Câu 13:
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Trong các phương trình sau, phương trình nào là phương trình của một đường tròn?
Câu 14:
Tọa độ tâm I và bán kính R của đường tròn (C): (x – 1)2 + (y + 3)2 = 16 là:
Tọa độ tâm I và bán kính R của đường tròn (C): (x – 1)2 + (y + 3)2 = 16 là: