Câu hỏi:
19/12/2023 112Cho parabol như hình dưới. Xác định hàm số đó.
A. y = 2x2 – 3;
B. y = x2 – 3;
C. y = x2 – 5;
D. y = x2 – 3x.
Trả lời:
Hướng dẫn giải:
Đáp án đúng là: B.
Gọi dạng của parabol trên là y = ax2 + bx + c (a ≠ 0).
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng lên, đỉnh I(0; –3) và cắt trục tung tại điểm (0; –3).
Do đó ta có:
a > 0
\( - \frac{b}{{2a}} = 0\) ⇒ b = 0
c = –3
Dựa vào đồ thị ta còn thấy, đồ thị hàm số đi qua điểm (2; 1) do đó ta có:
Tại x = 2 thì y = a.22 + b.2 + c = 1
Hay 4a + 2b + c = 1
Mà b = 0, c = –3
⇒ 4a – 3 = 1
⇒ 4a = 4
⇒ a = 1 (TM)
Vậy hàm số y = ax2 + bx + c là y = x2 – 3.
Hướng dẫn giải:
Đáp án đúng là: B.
Gọi dạng của parabol trên là y = ax2 + bx + c (a ≠ 0).
Dựa vào hình vẽ, ta thấy đồ thị hàm số y = ax2 + bx + c có bề lõm hướng lên, đỉnh I(0; –3) và cắt trục tung tại điểm (0; –3).
Do đó ta có:
a > 0
\( - \frac{b}{{2a}} = 0\) ⇒ b = 0
c = –3
Dựa vào đồ thị ta còn thấy, đồ thị hàm số đi qua điểm (2; 1) do đó ta có:
Tại x = 2 thì y = a.22 + b.2 + c = 1
Hay 4a + 2b + c = 1
Mà b = 0, c = –3
⇒ 4a – 3 = 1
⇒ 4a = 4
⇒ a = 1 (TM)
Vậy hàm số y = ax2 + bx + c là y = x2 – 3.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho hàm số bậc hai y = ax2 + bx + c (a ≠ 0) có đồ thị như hình dưới.
Xác định công thức của hàm số đó.
Cho hàm số bậc hai y = ax2 + bx + c (a ≠ 0) có đồ thị như hình dưới.
Xác định công thức của hàm số đó.
Câu 2:
Cho hàm số bậc hai y = ax2 + bx + c (a ≠ 0) có đồ thị như hình dưới.
Khi đó 2a + b + 2c bằng:
Cho hàm số bậc hai y = ax2 + bx + c (a ≠ 0) có đồ thị như hình dưới.
Khi đó 2a + b + 2c bằng:
Câu 3:
Cho hàm số y = ax2 + bx + c (a ≠ 0) có đồ thị như hình dưới đây.
Công thức hàm số của đồ thị trên là:
Cho hàm số y = ax2 + bx + c (a ≠ 0) có đồ thị như hình dưới đây.
Công thức hàm số của đồ thị trên là:
Câu 4:
Cho hàm số y = ax2 + bx + c (a ≠ 0) có đồ thị như hình dưới. Xác định hàm số đó.
Câu 10:
Cho đồ thị hàm số y = ax2 + bx + c (a ≠ 0) trong hình vẽ sau. Xác định hàm số đó.
Cho đồ thị hàm số y = ax2 + bx + c (a ≠ 0) trong hình vẽ sau. Xác định hàm số đó.