Cho hình vuông C1 có cạnh bằng 1. Gọi C2 là hình vuông có các đỉnh là trung điểm các

Cho hình vuông C1 có cạnh bằng 1. Gọi C2 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C1; C3 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C2; ... Cứ tiếp tục quá trình như trên, ta được dãy các hình vuông C1; C2; C3; ...; Cn; ... Diện tích của hình vuông C2023 là:

A. \(\frac{1}{{{2^{2022}}}}\).

B. \(\frac{1}{{{2^{2023}}}}\).

C. \(\frac{1}{{{2^{1011}}}}\).

D. \(\frac{1}{{{2^{1012}}}}\).

Trả lời

Đáp án đúng là: A

Hình vuông C1 có diện tích S1 = 1.

Hình vuông C2 là hình vuông có các đỉnh là trung điểm các cạnh của hình vuông C1, do đó hình vuông C2 có diện tích S2 = \(\frac{1}{2}{S_1} = \frac{1}{2}\).

Tương tự, hình vuông C3 có diện tích \({S_3} = \frac{1}{2}{S_2} = \frac{1}{2}.\frac{1}{2} = \frac{1}{{{2^2}}}\).

Cứ tiếp tục như thế ta tính được diện tích hình vuông C2023\({S_{2023}} = \frac{1}{{{2^{2022}}}}\).

Câu hỏi cùng chủ đề

Xem tất cả